WWW.OS.X-PDF.RU
БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА - Научные публикации
 

Pages:   || 2 | 3 |

«АТОМНЫЙ СПЕКТРАЛЬНЫЙ АНАЛИЗ МОСКВА «ИЗДАТЕЛЬСТВО МАШИНОСТРОЕНИЕ-1» В.И. Барсуков АТОМНЫЙ СПЕКТРАЛЬНЫЙ АНАЛИЗ МОСКВА ...»

-- [ Страница 1 ] --

В.И. Барсуков

АТОМНЫЙ

СПЕКТРАЛЬНЫЙ

АНАЛИЗ

МОСКВА

«ИЗДАТЕЛЬСТВО МАШИНОСТРОЕНИЕ-1»

В.И. Барсуков

АТОМНЫЙ СПЕКТРАЛЬНЫЙ АНАЛИЗ

МОСКВА

«ИЗДАТЕЛЬСТВО МАШИНОСТРОЕНИЕ-1»

УДК 543.42 ББК 344 Б26

Р е ц е н з е н т ы:

Доктор химических наук

, профессор В.И. Вигдорович Доктор химических наук, профессор А.А. Пупышев Кандидат физико-математических наук В.Б. Белянин Барсуков В.И.

Б26 Атомный спектральный анализ. М.: «Издательство Машиностроение-1», 2005. 132 с.

Рассмотрены теоретические основы оптической спектроскопии, в том числе эмиссионной (с различными источниками возбуждения спектров), пламенной фотометрии и методов атомной абсорбции с пламенными и электротермическими атомизаторами, а также принципы действия, оптические и электрические схемы основных приборов, используемых в практической спектроскопии, методы определения состава проб различного происхождения; некоторые инструментальные способы повышения чувствительности пламеннофотометрических методов.



Предназначена для специалистов, работающих в промышленных, агрохимических и научноисследовательских аналитических лабораториях.

Может быть полезна преподавателям, аспирантам и студентам вузов.

УДК 543.42 ББК 344 Барсуков В.И., 2005 ISBN 5-94275-179-X «Издательство Машиностроение-1», 2005 Научное издание БАРСУКОВ Владимир Иванович

АТОМНЫЙ

СПЕКТРАЛЬНЫЙ

АНАЛИЗ

Монография Редактор Т.М. Г л и н к и н а Инженер по компьютерному макетированию Т.А. С ы н к о в а Подписано к печати 30.03.2005 Формат 60 84/16. Гарнитура Times. Бумага офсетная. Печать офсетная Объем: 7,67 усл. печ. л.; 7,5 уч.-изд. л.

Тираж 400 экз. С. 200М «Издательство Машиностроение-1», 107076, Москва, Стромынский пер., 4 Подготовлено к печати и отпечатано в Издательско-полиграфическом центре Тамбовского государственного технического университета 392000, Тамбов, Советская, 106, к. 14 Барсуков Владимир Иванович – кандидат химических наук, доцент кафедры физики Тамбовского государственного технического университета (ТГТУ), научный руководитель лаборатории спектрального анализа при кафедре физики ТГТУ.

В течение многих лет занимается исследованиями в области пламенного эмиссионного и атомно-абсорбционного методов анализа с целью повышения их чувствительности и точности инструментальными способами.

Организатор нескольких школ передового опыта для работников аналитических лабораторий сельскохозяйственных и промышленных предприятий, а также девяти Тамбовских областных научнотехничес-ких конференций по спектральному анализу и его применению, в работе которых принимали участие ведущие ученые из различных регионов страны.

Автор более 200 научных и учебно-методических работ.

ВВЕДЕНИЕ

Среди различных аналитических (химических, физико-химических и др.) методов изучения химического состава вещества оптический спектральный анализ (эмиссионный и атомно-абсорбционный) является одним из самых быстро развивающихся и применяющихся на практике методов анализа.

Круг вопросов, которые решаются методами спектрального анализа, весьма обширен: анализ особо чистых веществ, бездефектный контроль готовых изделий, экспресс-анализ металлургического литья, разведка рудных месторождений, анализ лунного грунта и состава звездного вещества, контроль промышленных и бытовых сточных вод, загрязнения воздушного бассейна и воздушной среды производственных помещений и т.д. В соответствии с этим методы спектрального анализа берут себе на вооружение специалисты самых различных областей знаний: металлурги, химики, биологи, астрономы, работники сельского хозяйства и медицины, физики и др.

Одним из главных достоинств спектрального анализа является его непревзойденно высокая экспрессность. В считанные секунды с помощью простейшего переносного стилометра проводится маркировочный анализ для контроля химического состава поступающего сырья и материалов. Применение квантометра для экспресс-анализа плавки металла, например, в крупных конвертерах, где весь процесс заканчивается за 30 мин, позволяет в течение одной минуты произвести определение 10 – 12 элементов, что дает возможность своевременно ввести необходимую корректировку в процесс плавки. Подобные примеры подтверждают необходимость знаний основ и методов спектрального анализа современному инженеру.

1. СПЕКТРАЛЬНЫЙ АНАЛИЗ И

ЕГО РОЛЬ В НАУКЕ И ТЕХНИКЕ

–  –  –

Рис. 1. Принципиальная схема спектрального анализа:

а – эмиссионного; б – абсорбционного;

1 – источник света; 2 – осветительный конденсор;

3 – поглощающая ячейка; 4 – спектральный аппарат; 5 – регистрация спектра;

6 – определение длины волны спектральных линий;

7 – качественный анализ пробы с помощью таблиц и атласов;

8 – определение интенсивности линий;

9 – количественный анализ пробы по градуировочному графику До 1923 г. спектральный анализ имел, главным образом, качественный характер и сыграл важную роль в открытии новых элементов. Методами спектрального анализа было открыто 25 элементов периодической системы Д.И. Менделеева, в том числе: цезий и рубидий (Кирхгоф и Бунзен, 1861 г.), таллий (Крукс, 1861 г.), индий (Райх и Рихтер, 1863 г.), галлий (Лекок де Буабордан, 1875 г.), гелий (Локьер, 1868 г.). Рамзаем и Рэлеем были открыты инертные газы аргон, неон, ксенон и криптон; затем были открыты 14 редкоземельных элементов и, наконец, в 1923 г. гафний.





В чисто производственной обстановке спектральный анализ начал использоваться в 1923 г. в Англии для сортировки предназначенного к переплавке металлического лома, при этом применялся спектроскоп с дифракционной решеткой.

В России качественный спектральный анализ впервые широко применил в 1909 г. академик В.И.

Вернадский при геохимических исследованиях.

Начиная с 1930-х гг., атомная спектроскопия развивается как способ количественного определения элементов и становится основным методом исследования состава вещества в самых различных областях науки и техники: металлургии, геологии, астрономии, биологии, медицине и др.

Основными преимуществами спектроскопии перед другими методами анализа являются:

высокая чувствительность (10–5…10–7 %) – практически чувствительность спектрального анализа всегда выше чувствительности весового химического анализа;

достаточно хорошая точность (3…5 %) – при малых концентрациях точность спектрального анализа превосходит точность химического анализа и может несколько уступать ему при больших концентрациях;

экспрессность – в абсолютном большинстве случаев при спектральном анализе затраты времени от взятия пробы и до получения конечного результата несравнимо меньше, чем при других методах анализа;

многокомпонентность – методами спектрального анализа возможно одновременное определение 20 и более элементов, в то время как при химическом анализе возможно только раздельное определение каждого элемента, для чего требуется проведение отдельных специфических реакций;

контроль изделий без их разрушений – спектроскопия остается единственным доступным методом анализа крупногабаритных изделий и предметов, не допускающих повреждения их поверхностей;

требование малого количества анализируемого образца – во многих случаях для проведения спектрального анализа достаточно сотых долей грамма исследуемого вещества;

универсальность – практически одни и те же методы спектрального анализа пригодны для определения различных элементов и в самых разнообразных объектах – от природного сырья до живой клетки;

документальность – при фотографическом варианте метода (получение фотопластинки) или при фотоэлектрической регистрации (лента самописца или распечатка) результаты анализа могут храниться длительное время и быть документом, по которому можно многократно произвести проверку правильности и точности анализа.

Наконец, имеется область исследований, не доступная до настоящего времени никаким другим методам анализа, кроме спектрального. Речь идет об изучении состава небесных тел и межзвездного вещества. Спектральный метод анализа имеет в этой области полную монополию.

2. СПЕКТРАЛЬНЫЕ ПРИБОРЫ

2.1. ПОЛУЧЕНИЕ СПЕКТРА И ОСНОВНЫЕ

ХАРАКТЕРИСТИКИ СПЕКТРАЛЬНЫХ ПРИБОРОВ

–  –  –

Спектральные приборы классифицируются следующим образом.

1. По применяемым диспергирующим системам: призменные и дифракционные.

2. По используемой области спектра: инфракрасные, ультрафиолетовые, вакуумного ультрафиолета и приборы видимой области.

3. По способам регистрации: визуальные, фотографические и фотоэлектрические.

2.2. ДИСПЕРГИРУЮЩИЕ СИСТЕМЫ

В качестве диспергирующих систем, как правило, применяются призмы и дифракционные решетки.

Диспергирующие системы являются основой любого спектрального прибора. Их назначение – разложение света в спектр. Преломляющее ребро призмы, а в случае дифракционной решетки ее штрихи располагаются параллельно входной щели спектрального прибора.

2.2.1. Призма Действие призмы основано на том, что показатель преломления всех веществ зависит от длины волны падающего света. Следовательно, угол отклонения луча призмы будет различным для разных длин волн. На рис. 3 преломляющий угол А образован преломляющими гранями призмы I и II. Луч, падающий на переднюю грань призмы, образует угол с нормалью N1. Преломившись, он пойдет внутри призмы под углом к нормали и упадет под углом 1 на заднюю грань призмы. Из призмы луч выходит под углом 1 к нормали N2, отклонившись на некоторый угол от своего первоначального направления.

Ход лучей в главном сечении призмы можно рассчитать по формулам:

sin = sin ; 1 = A ; sin 1 = n sin 1, n

–  –  –

Для призмы, имеющей в сечении, перпендикулярном преломляющему ребру, правильный треугольник (рис. 4), при угле наименьшего отклонения преломленный луч внутри призмы пойдет параллельно ее основанию.

–  –  –

Для получения большей угловой дисперсии необходимо применять призмы с большим преломляющим углом и из материала с большими значениями показателя преломления. На практике целесообразней использовать призмы с углом А = 60. При этих условиях угловая дисперсия определяется как:

–  –  –

при = 0, т.е. вблизи нулевого порядка cos 1: D k / d.

Угловая дисперсия решетки меняется с изменением длины волны очень медленно. Можно показать, что разрешающая способность дифракционной решетки определяется выражением R = kN, т.е. только числом штрихов и порядком спектра.

Дифракционные решетки обладают рядом преимуществ перед призмами. Область длин волн, в которых могут применяться призмы, ограничивается наличием прозрачных материалов, пригодных для их изготовления. Решетка может работать в более широком диапазоне длин волн. Дисперсия призмы значительно меняется с длиной волны, быстро возрастая по мере приближения к коротковолновой или длинноволновой границе поглощения материала. Угловая дисперсия решетки почти не зависит от длины волны (рис. 6).

2.3. ОСНОВНЫЕ ТИПЫ СПЕКТРАЛЬНЫХ ПРИБОРОВ

В зависимости от способа регистрации спектральные приборы делятся на: 1) стилоскопы и стилометры, предназначенные для визуального наблюдения спектров; 2) спектрографы – для фотографической регистрации спектров; 3) монохроматоры, имеющие выходную щель для выделения монохроматического света строго определенной длины волны с последующей регистрацией его интенсивности при помощи фотоэлектрического преобразователя. Рассмотрим последовательно эти типы спектральных приборов.

2.3.1. Стилоскопы и стилометры

Эти приборы предназначены для визуального анализа, поэтому их рабочая спектральная область охватывает примерно 390…700 нм. Они применяются при качественных и полуколичественных массовых анализах, которые не требуют большой точности (порядка 25…50 %); сортировке стали и сплавов, в геологии, анализе готовых изделий и т.д. Для обеспечения достаточно высокой разрешающей способности они снабжены диспергирующей системой, состоящей из нескольких стеклянных призм, как правило из трех. В качестве источника излучения обычно используют дуговой разряд, реже – искровой.

С т и л о с к о п ы – это спектроскопы, имеющие специальное устройство для перехода от одного участка спектра к другому. Промышленность выпускает два типа стилоскопов – стационарные и переносные. В спектральных лабораториях имеются много приборов разных марок. Рассмотрим некоторые из них. Стилоскоп СЛ-3, его внешний вид показан на рис. 8.

На станине 1, снабженной тремя установочными винтами, размещены: коллиматор, корпус, зрительная труба и окулярное устройство. Коллиматорная труба 2 несет щель и объектив. Щель 3 состоит из двух ножей, расстояние между лезвиями которых равно 0,03 мм, ножи устанавливаются при сборке и закрепляются. Корпус 4 содержит три диспергирующие призмы и прямоугольную призму. Установка призм про-изводится при сборке стилоскопа. Камера зрительной трубы 5 в своей части, обращенной к призмам, имеет объектив; с другого конца к ней прикреплено окулярное устройство 6, позволяющее перемещать окуляр 7 вдоль спектра и получать резкое изображение различных областей спектра. Фокусировка осуществляется вращением накатанного кольца 9 на окуляре 7. В поле зрения окуляра находится указатель в виде острия, устанавливаемого на отдельные спектральные линии.

На крышке окулярного устройства сверху укрепляется шкала с выгравированными на ней символами химических элементов. К прибору прилагаются две сменные верхние шкалы 10 и 15 (рис. 9). Шкала 10 применяется при сортировке легированных сталей, шкала 15 служит для сортировки цветных сплавов на медной основе.

С помощью индекса 11 можно устанавливать окуляр по делениям верхней шкалы. При совпадении индекса с нанесенной на верхней шкале риской символа какого-либо элемента в поле зрения окуляра видна область спектра, в которой расположены применяемые для анализа данного элемента спектральные линии.

Миллиметровая шкала 13 имеет деления от 0 до 90 мм. Отсчет по этой шкале производится с помощью бокового наружного индекса 14. Пользуясь этой шкалой и дисперсионной кривой, прилагаемой к прибору, можно устанавливать окуляр на нужную область спектра.

Рис. 9. Окулярная часть стилоскопа СЛ-3 со сменными шкалами Для анализа крупногабаритных изделий применяется переносной стилоскоп типа СЛП-2 (рис. 10).

Нужная область спектра в этом приборе устанавливается в поле зрения окуляра барабаном, который связан с механизмом поворота призмы. Стилоскоп имеет небольшой вес и удобен в обращении. Он работает в комплекте с переносным дуговым генератором.

Включение генератора осуществляется с помощью рукоятки 12 (рис. 10), смонтированной на стилоскопе.

Стационарным является стилоскоп типа СЛ-11 (рис. 11). Выведение нужной области спектра осуществляется маховичком, который связан с поворотным механизмом призмы и с барабаном, имеющим миллиметровую шкалу и шкалу с символами элементов. В нижней части прибора помещен генератор.

Анализируемый образец произвольной формы помещается на столик в левой части стилометра. В фокальную плоскость можно вводить фотометрический клин переменной плотности, который поглощает часть света. Это дает возможность ослаблять ту линию в спектре, которая проходит через клин, при этом интенсивность остального спектра не меняется.

Таким образом, это устройство позволяет сравнить интенсивности двух линий и превращает стилоскоп в простейший стилометр. Разрешающую способность стилоскопа проверяют по линиям в дуговом спектре железа (табл. 1). Исправный прибор дает хорошее разрешение

1. Спектральные линии для проверки стилоскопов Проверка разрешения Проверка освещенности Fe 5079,24 – Fe 5079,75 A Cu 4275,13 A Fe 5191,46 – Fe 5192,35 A Cu 6147,31 A Cr 5409,79 – Fe 5410,91 A Fe 4643,31 A Fe 6136,62 – Fe 6137,70 A каждой пары линий. Линии в спектре должны иметь равномерную яркость по высоте. В дуговом спектре железа при токе 4 А и медном подставном электроде четко видны над сплошным фоном линии, указанные в таблице.

С т и л о м е т р – это стилоскоп, снабженный фотометром для количественного измерения относительной интенсивности спектральных линий. Например, стилометр СТ-7 (рис. 12), собранный в виде компактного прибора, в котором совмещены спектральный аппарат, фотометр и тубус с однолинзовой осветительной системой. Щель, ширину которой можно регулировать, расположена в фокусе объектива.

Световой поток, идущий от щели к объективу, поворачивается на 90° поворотной призмой. Фокусировку коллиматора производят перемещением объектива вдоль его оптической оси. Диспергирующая система состоит из двух 60-градусных призм и одной призмы постоянного отклонения.

Вывод нужной области спектра осуществляется одновременным вращением всей диспергирующей системы. Оптическая ось камерного объектива дважды поворачивается поворотной призмой так, что остальная часть оптической схемы оказывается расположенной выше. Это и обеспечивает большую компактность прибора.

В фокальной поверхности камерного объектива расположен фотометр, оптическая система которого вторично строит изображение спектра перед окуляром. Фотометр позволяет ослаблять в случае необходимости любую из линий аналитической пары. Кроме того, можно сближать между собой в поле зрения аналитическую пару линий, что позволяет значительно повысить точность измерений. Стилометр может работать в комплекте с генераторами дуговыми ДГ-2 или искровыми ИГ-3, а также другими источниками света.

–  –  –

С п е к т р о г р а ф ы – это спектральные аппараты, в которых спектр регистрируется фотографическим методом. Они служат, главным образом, для работы с эмиссионными спектрами, но могут быть легко использованы и для получения спектров поглощения. Наиболее распространенными являются кварцевые призменные спектрографы типа ИСП-22, ИСП-28, ИСП-30. Последний (рис. 13 и 14) отличается тем, что имеет автоматическую установку времени обжига, экспозиции и перемещения кассеты.

Рабочая область спектра 200…600 нм.

Каждый спектральный прибор (из выше перечисленных) имеет в качестве диспергирующей системы 60-градусную кварцевую призму с основанием 42 мм и высотой 30 мм. Увеличение оптической системы при длине волны 257,3 нм равно 1,2. Разрешающая способность перечисленных приборов в области 300,0 нм – 10 000. В этой области разрешаются спектральные линии, различающиеся не менее чем на 0,03 нм. В коротковолновой части искрового спектра железа разрешается дуплет 234,81 и 234,83 нм и триплет 310,0 нм при ширине щели 0,005 нм.

Оптическая схема спектрографа ИСП-30 представлена на рис. 14, а. Свет от источника излучения проходит трехлинзовый осветитель, состоящий из конденсоров 2, 3 и 4, щель 6 и попадает на зеркальный коллиматорный объектив 7, который отклоняет падающие на него лучи на угол 2°17'. Параллельный пучок, идущий от зеркального объектива, падает на призму 8, разлагающую его в спектр. Кварцевый объектив 9 собирает лучи в своей фокальной плоскости. Зеркало 10 поворачивает пучок света на угол 48°11' и направляет его на фотопластинку 11.

–  –  –

Рис. 14. Оптическая и электрическая схемы спектрографа ИСП-30:

а – оптическая схема; б – электрическая схема;

1 – источник света; 2 – 4 – конденсорные линзы;

5 – ступенчатый ослабитель; 6 – входная щель; 7 – зеркальный объектив;

8 – кварцевая призма; 9 – кварцевый объектив;

10 – зеркало; 11 – фотопластинка Осветительная система прибора, состоящая из трех конденсоров с фокусными расстояниями 75, 150 и 275 мм, обеспечивает ахроматическое освещение щели при установке конденсоров и источника света на расстояния, указанные на рис. 14. Источник света проектируется конденсором 2 на диафрагму револьверного типа, укрепленную на оправе конденсора 3. Последний проектирует уменьшенное изображение конденсора 2 на щель спектрографа. Изображение освещенной диафрагмы конденсором 4 проектируется в плоскость объектива камеры и заполняет его. Трехлинзовую систему конденсоров можно заменить одним кварцевым конденсором с фокусным расстоянием 75 мм, который устанавливается на расстоянии 316 мм от щели; источник света помещается на расстоянии 67 мм от конденсора.

При этом изображение электродов получается в плоскости камерного объектива.

Электрическая схема (рис. 14, б) состоит из трех основных частей: электромеханического реле времени обжига, электромеханического реле времени экспозиции и электропривода кассеты.

Работа реле времени основана на равномерности вращения синхронного электродвигателя. Время выдержки задается углом поворота стрелки, связанной с осью электродвигателя, относительно нулевого положения и равно времени, в течение которого стрелка из установленного положения приходит в нулевое.

Питание на схему подается от сети включением тумблера В1 «сеть». Неоновая лампочка Л3 сигнализирует о наличии напряжения сети. После нажатия переключателя П1 в сторону «пуск», реле Р срабатывает и своим контактом блокирует этот переключатель. Другой контакт реле Р включает генератор дуги.



Цепь обмотки реле Р замкнута через один из концевых выключателей КВ1 или КВ2, который стоит в положении, обозначенном на схеме пунктиром. Одновременно напряжение поступает на реле времени обжига РВ1. Электромагнит ЭМО подключает стрелку шкалы обжига к электродвигателю МО и по истечении времени обжига стрелка замыкает контакт КО, который включает реле РО.

Реле РО своими контактами выключает электромагнит ЭМО и стрелка шкалы реле обжига возвращается в исходное положение. Одновременно реле РО подключает электромагнит затвора ЭМЗ и электромагнит ЭМЭ реле экспозиции. Электромагнит ЭМЭ подключает стрелку шкалы реле экспозиции к электромотору МЭ и по истечении времени экспозиции стрелка замыкает контакт КЭ, который включает реле РЭ.

Реле РЭ своими контактами выключает электромагнит ЭМЭ и стрелка шкалы реле экспозиции возвращается в исходное положение. Одновременно реле РЭ разрывает цепь питания электромагнита затвора ЭМЗ и включает двигатель кассеты М. Как только двигатель начнет вращаться, кулачок на валу двигателя нажимает на концевые выключатели КВ1 и КВ2 и разрывает цепь реле Р, что снимает напряжение с реле времени и выключает генератор дуги. Двигатель М вращается до тех пор, пока кулачок на его валу не сойдет с концевых выключателей КВ1 и КВ2.

Кассетная рамка, поднявшись до упора, нажимает на концевой выключатель КВ4 и разрывает цепь питания прибора.

Для возврата рамки в исходное положение (нижнее) необходимо нажать переключатель П2 в положение «вниз». Кассетная рамка опустится и нажмет на концевой выключатель КВ3, после этого переключатель П2 необходимо вернуть в среднее положение.

Переключатель П2 имеет фиксацию только в положении «вниз». Для подъема на один шаг кассетной рамки от руки необходимо кратковременное нажатие переключателя П2 в положение «вверх».

Переключатель П1 имеет фиксацию только в положении «стоп». При нажатии переключателя в это положение прекращается работа реле времени.

Для работы без обжига необходимо стрелку шкалы реле обжига поставить в нулевое положение.

Для открытия затвора без реле обжига и экспозиции служит выключатель В2. При впечатывании в спектрограмму шкалы, концевой выключатель КВ5 включает лампочку подсветки Л1 и сигнальную лампочку Л2. Тумблер В3 служит для установки шага подвижки кассетной рамки в 1 мм и 2 мм.

Спектрографы применяются для решения самых разнообразных аналитических задач. Они могут работать практически с любым источником света при любом методе введения вещества в разряд. Для установки источника света и системы освещения щели спектрограф снабжен рельсом. Электроды укрепляют в специальном штативе типа ШТ-9 или ШТ-10 (рис. 15) или ШТ-23.

Щель спектрографа – одна из ответственных его деталей. Она образована двумя металлическими ножами (рис. 16), которые перемещаются в направляющих. В спектрографе применяют симметричные щели, ширину которых можно регулировать с помощью микрометрического винта с ценой делений 0,001 мм. Перемещение ножей осуществляется за счет пружин, которые предохраняют края ножей от поломки, если микрометрический винт повернуть за нулевое деление. Рекомендуемая величина щели 10…12 мк.

Перед щелью устанавливают д и а ф р а г м у Г а р т м а н а, которая позволяет ограничить величину спектра, а также фотографировать его через разные по высоте участки щели (рис. 17).

Рис. 15. Штатив Рис. 16. Щель прибора:

спектрографа стандартный узел и профиль ножей

Рис. 17. Диафрагма Гартмана

Левый фигурный вырез диафрагмы служит для ограничения высоты щели. Его левая часть закрывает щель сверху и снизу, оставляя открытой середину. Положение выреза перед щелью контролируется по верхней шкале. Правая часть выреза закрывает среднюю часть щели, оставляя открытыми верхнюю и нижнюю части. Положение этого выреза контролируют по правой нижней шкале. Отсчеты по обеим шкалам читаются против края корпуса щели. Фигурный вырез позволяет фотографировать в средней части щели исследуемый спектр, а сверху и снизу – спектр сравнения. В средней части диафрагмы расположены два выреза, которые служат для ограничения высоты щели в ее центральной части, когда нужно сфотографировать ряд спектров с высотой щели 1 или 2 мм. Установка производится по двум длинным штрихам, расположенным в левой нижней части диафрагмы.

В правой части диафрагмы расположены ступенчатые вырезы. При работе с ними диафрагму следует повернуть на 180°. Устанавливая ступени перед щелью по шкале, расположенной в нижнем левом краю, можно получать на фотопластинке девять соприкасающихся спектров одинаковой высоты.

Второй, пятый и восьмой спектры фотографируются одновременно.

Рис. 8. Внешний вид стилоскопа СЛ-3 С т у п е н ч а т ы й о с л а б и т е л ь – это стеклянная или кварцевая пластинка, закрепленная в металлической оправе (рис. 18). На пластинке нанесены тонкие слои распыленной в вакууме платины в виде платиновой черни. Слои наносят ступеньками в виде узких полос, расположенных рядами на расстоянии 0,3 мм друг от друга. Каждый ряд покрыт платиной различной плотности, и, следовательно, они обладают различной пропускаемостью света.

Пропусканием называют отношение интенсивности света, прошедшего через ступеньку, к интенсивности света, падающего на нее. Величину этого отношения выражают в процентах.

Ступенчатый ослабитель применяется в количественном анализе для визуального метода фотометрического интерполирования, для построения характеристической кривой фотографической пластинки и для ослабления почернений аналитических линий, превышающих нормальные почернения на спектрограмме.

В зависимости от назначения ступенчатые ослабители бывают разных типов: 9-ступенчатые, 3ступенчатые и др. Девятиступенчатый ослабитель имеет семь ступеней, напыленных платиной, и две ступеньки без платины – сверху и снизу от напыленных. Трехступенчатый ослабитель имеет два напыленных слоя и один прозрачный. Пропускание ступенек 30, 60 и 100 %. Каждый ослабитель снабжен фирменным номером и аттестатом, в котором приводятся результаты градуировки – величины логарифмов пропускания каждой ступеньки.

Для исследования эмиссионных спектров в видимой области обычно используют спектрограф ИСП-51 со стеклянными призмами.

Его рабочий диапазон 360…1000 нм. Прибор имеет две камеры с фокусным расстоянием 120 и 270 мм. Схема прибора (рис. 19) состоит из входной щели 1, объектива коллиматора 2, диспергирующей системы из трех призм 3, 4, 5, объектива камеры 6 (f = 120 мм) или 8 (f = 270 мм), кассеты 7, призмы сравнения 9.

Для получение большей линейной дисперсии (табл. 2 ) призменная система ИСП-51 может быть снабжена камерой УФ-84 с фокусным расстоянием f = 800 мм и УФ-90 с f = 1300 мм. При установке камеры УФ-89 заменяется также коллиматор спектрографа с f1 = 304 мм на

–  –  –

коллиматор УФ-61 с f = 800 мм. Спектрограф ИСП-51 с объективом камеры УФ-90 работает по автоколлимационной схеме. Прибор имеет три кассеты, рассчитанные на пластинки 6,5 9; 9 12; 6,5 18.

Вращением рукоятки осуществляется переход от одной области спектра к другой. Этот переход контролируется по шкале, показывающей число оборотов.

Наиболее распространенными спектрографами с дифракционной решеткой являются спектрографы типа ДФС-8 (рис. 20, 21) и ДФС-13, имеющие практически однотипную оптическую систему.

–  –  –

Они выпускаются либо с дифракционной решеткой, имеющей 600 штр./мм, либо 1200 штр./мм с обратной дисперсией, равной 0,6 и 0,3 нм/мм, соответственно. Спектральная рабочая область этих приборов 1000…200 нм, т.е. она захватывает вся видимую и ультрафиолетовую части спектра.

Переход от одной области спектра к другой осуществляется поворотом решетки с помощью рукоятки. Одновременно вращается барабан со шкалой длин волн. Общая длина спектра первого порядка с решеткой 1200 штр./мм составляет 2,7 м. На фотографической пластинке одновременно можно сфотографировать участок в 54 нм. Он занимает на пластинке 18 см. В приборах с решеткой 600 штр./мм длина спектра в два раза меньше, и на такой же пластинке помещается вдвое больший участок. Прибор рассчитан для работы в первом порядке решетки. Высокая разрешающая способность дифракционных приборов достигается благодаря большому фокусному расстоянию камерного объектива.

М о н о х р о м а т о р ы и п о л и х р о м а т о р ы. Наиболее распространенным прибором этого класса является монохроматор типа УМ-2 (рис. 22), который предназначен для работы в видимой части спектра. В качестве диспергирующей системы применена призма постоянного отклонения. Переход от одной области спектра к другой осуществляют с помощью барабана, вращение которого связано с поворотом призменного столика. По шкале барабана отмечается угол его поворота, проградуированный по известному спектру. Монохроматор обладает небольшой дисперсией, поэтому он может быть использован при изучении только простых эмиссионных и абсорбционных спектров.

В ультрафиолетовой и видимой части спектра используют двойной монохроматор типа ДМР-4.

Конструктивно он представляет собой как бы соединение двух монохроматоров. Это сделано с целью устранения рассеянного света. Он имеет три щели: входную, среднюю и выходную. В связи с большим количеством преломляющих и отражающих поверхностей, пропускание двойного монохроматоров очень невелико, а необходимая точность юстировки выше, чем у простого монохроматора.

Монохроматор позволяет выделить только одну спектральную линию. Поэтому различные элементы приходится анализировать один за другим последовательно, выводя аналитические линии на выходную щель аналогично тому, как выводятся разные аналитические линии в обычном визуальном стилометре.

–  –  –

Большое распространение получили многощелевые приборы, носящие название полихроматоров или квантометров, например, МФС-4 (рис. 23). Каждая выходная щель этих приборов выведена на определенную спектральную линию, при этом общее число щелей равно 12. Регистрация – фотоэлектрическая. Одновременно регистрируются интенсивности излучения линий нескольких элементов.

На двадцать четыре канала рассчитаны приборы МФС-8 и ДФС-51, выпускаемые ОКБ «Спектр», а многоканальный эмиссионный спектрометр LS-1000 этой же фирмы имеет 48 аналитических каналов.

Регистрирующая часть спектрометров последнего поколения укомплектована решеткой эшелле, заметно повышающей спектральное разрешение (иногда используется Фурье-спектрометр или интерферометр Фабри-Перо), и ПЗС-детектором (линейкой или матрицей), что существенно расширило возможности приборов.

Применение современных ПЗС-детекторов вместо фотоумножителей в приборах для атомноабсорбционной спектрометрии с электротермической атомизацией и широкополосного излучения на основе импульсного разряда в ксеноне автоматически решают проблемы коррекции фона.

Следует заметить, что в настоящее время рынок аналитических приборов имеет универсальные и специализированные приборы, позволяющие решать практически любые задачи спектрального анализа.

–  –  –

3.1. ХАРАКТЕРИСТИКА ПРОБ М о н о л и т н ы е п р о б ы. Они используются главным образом в анализе металлов и сплавов.

Форма образца, когда нет необходимости в большой точности, не играет никакого значения. Одним электродом служит сам образец, а вторым (противоэлектрод) является электрод либо из спектрального угля, либо из чистого материала, входящего в состав пробы. Например, медь при анализе сплавов на основе меди, железо армко – при анализе сталей и т.д. При контроле металлургических процессов пробу расплавленного металла отливают в кокиль, который затем анализируется. Чувствительность определения примесей в этом случае составляет до 10 %. Следует иметь в виду, что в момент затвердевания наблюдается процесс ликвации – частичное разделение компонентов сплава, что может привести к ошибкам определения.

Ж и д к и е п р о б ы. В пламенной фотометрии наиболее распространен метод введения жидких проб. Они могут представлять собой природные воды с различной степенью минерализации, промышленные и бытовые сточные воды, содержащие различного рода загрязнения, а также специально приготовленные пробы, когда анализируемый объект переводится в состояние раствора. В качестве растворителя используется вода, отдельные кислоты или их смеси, органические соединения. Например, при анализе растений применяется метод «мокрого озоления». Проба обрабатывается кислотамиокислителями (HNO3, H2SO4, HClO4 и др.) или их смесью в различных пропорциях и комбинациях, а затем подвергается анализу. При анализе почв на микроэлементы анализируются так называемые почвенные вытяжки на каждый определенный элемент или группу элементов.

П о р о ш к о о б р а з н ы е п р о б ы. Введение пробы в виде порошков в разряд находит широкое применение в анализе солей, окислов, биологических объектов и т.д. Кроме того, одним из основных преимуществ этого метода является возможность получения достаточно хорошей гомогенности анализируемых проб путем их истирания. Отсюда получение лучшей точности и чувствительности, чем при использовании для анализа монолитных проб. В случае необходимости последние можно перевести в порошкообразное состояние путем их окисления при определенной температуре в токе кислорода.

Имеется большое число методов введения проб в источники света. Рассмотрим некоторые из них.

3.2. ИСПАРЕНИЕ ПРОБЫ ИЗ КРАТЕРА УГОЛЬНОГО ЭЛЕКТРОДА

Пробу в виде порошка помещают в кратер нижнего электрода, форма которого может быть различна (рис. 24 а, б, в). Верхний электрод обычно имеет форму усеченного конуса с площадкой 2 мм. Между электродами зажигается дуговой разряд. Наиболее равномерное испарение пробы происходит из кратера с тонкими стенками (рис. 24, а). Анализ трудно диссоциируемых соединений требует утолщенных стенок, так как необходимо, чтобы эти соединения испарялись одновременно с пробой (рис. 24, б). С целью локализации температуры нагрева электродов используют форму, показанную на рис. 24, в. По мере сгорания электродов их сводят так, чтобы расстояние между ними в процессе анализа сохранялось постоянным. В кратер помещают не более 5 мг порошка. Испаряют либо определенное его количество, либо полностью. В последнем случае улучшается точность анализа.

С целью повышения экспрессности анализа довольно длительная операция взятия навески пробы на аналитических весах и размещение ее в кратере нижнего электрода может быть заменена более быстрым приемом изготовления и загрузки таблеток в электрод с помощью мерника, который состоит из двух частей: матрицы и пуансона. Прием изготовления таблеток состоит в том, что проба плотно набивается в полость матрицы, а затем выдавливается в кратер электрода. Если пуансон снабдить ограничителем, то можно будет в определенных пределах изменять рабочий объем матрицы и, следовательно, размер таблеток. Установлено, что коэффициент вариаций для навески 2 мг не превышает 2…3 %, что практически не влияет на результаты определения элементов в пробе при проведении анализа с использованием внутреннего стандарта.

Введение порошкообразных проб возможно также путем их предварительного брикетирования совместно с металлическим (чаще медным) порошком и добавлением вяжущих веществ. В результате порош- кообразная проба становится токопроводящей и брикет можно использовать в качестве нижнего электрода, закрепляя его в металлическом держателе. Для получения хорошего качества а) б) в) брикетов необходимо не только тщательное перемеРис. 24. Наиболее часто шивание смеси, но и высоупотребляемые формы кое давление в процессе их нижних электродов изготовления. Это давление достигает 2 т/см2.

3.3. ВДУВАНИЕ ПОРОШКООБРАЗНОЙ ПРОБЫ

Дуга 1 образуется между электродами 6 (рис. 25), расположенными горизонтально и помещенными в керамическом цилиндре 7, через который сверху вниз равномерно просасывается воздух. Проба в виде порошка наносится тонким слоем на ленту транспортера 5. Порошок ссыпается и проходит через воронку 3, в нижней части 2 которой образуется высоковольтный искровой разряд, разбивающий комочки слипшихся частиц порошка. Затем порошок в пылевидном состоянии захватывается спускающимся вниз потоком воздуха, проходит между горизонтально расположенными электродами 6, затем поступает в дуговой разряд 1 и испаряется в нем.

3.4. ВВЕДЕНИЕ ПРОБЫ В ВИДЕ РАСТВОРОВ

Благодаря своей однородности, простоты изготовления эталонов и проб к анализу, возможности получения высокой точности, растворы являются наиболее предпочтительной формой для введения анализируемых веществ в плазму разряда. С этой целью часто применяют сосуды, снабженные электродами, которые носят название фульгураторов. Одна из конструкций такого сосуда представлена на рис.

26.

Раствор 2, находящейся в корпусе фульгуратора 1, по угольному стержню 3 поднимается в зону разряда под действием капиллярных сил. Как правило, при использовании фульгураторов применяют искровой разряд.

Рис. 25. Схема вдувания Рис. 26. Фульгуратор порошкообразных проб

–  –  –

Введение растворов в зону разряда возможно также методом вращающегося электрода (рис. 27).

Анализируемый раствор 5 помещается в ванну 1. Нижний электрод 4 изготовляется из меди или графита в форме диска и вращается со скоростью 10 об/мин. Нижняя часть диска погружена на несколько миллиметров в анализируемый раствор. При вращении диска все новые и новые порции раствора поступают в разряд 3. Непрерывное обновление раствора на поверхности электрода способствует повышению точности и чувствительности анализа. Верхний электрод 2 изготовляется из того же материала, что и нижний. Среди других методов можно отметить возможность введения в аналитический промежуток расплавов. Искра в этом случае зажигается между поверхностью расплава и подставным электродом.

4. ИСТОЧНИКИ ВОЗБУЖДЕНИЯСПЕКТРОВ И ФИЗИКО-ХИМИЧЕСКИЕПРОЦЕССЫ, ПРОТЕКАЮЩИЕ В НИХ

4.1. ОСНОВНЫЕ ТИПЫ ИСТОЧНИКОВ ВОЗБУЖДЕНИЯ

СПЕКТРОВ

Источники возбуждения необходимы для перевода анализируемой пробы вначале в газообразное, а затем в возбужденное состояние. При этом источники возбуждения должны обеспечить получение больших и по возможности постоянных интенсивностей излучения спектральных линий исследуемых элементов. Наибольшее распространение получили следующие источники возбуждения спектров: пламя, дуга постоянного или переменного тока, искра, индуктивно связанная плазма и др.

П л а м я. Использование пламени различного состава в атомной спектроскопии является исторически самым старым способом получения плазмы исследуемого вещества. Однако и в настоящее время он не потерял своего значения. Главным достоинством пламени служит высокая стабильность, позволяющая получить высокую точность измерений – не хуже 3 %.

Если в эмиссионной атомной спектроскопии температуры пламени (табл. 3) не достаточны для возбуждения и исследования большинства элементов, то разработанные в настоящее время атомно-абсорбционные и атомно-флуоресцентные методы позволяют изучать состояния практически всех элементов.

3. Температура пламени некоторых горючих смесей

Температура, °C Горючий газ – окислитель Светильный газ – воздух 1840 Пропан – воздух 1925 Водород – воздух 2045 Ацетилен – воздух 2397 Водород – кислород 2660 Водород – закись азота 2690 Светильный газ – кислород 2730 Ацетилен – кислород 3137 Дициан – кислород 5000 На рис. 28 изображена схема установки, которая обычно используется в атомной спектроскопии для получения плазмы смеси газа и окислителя. Камера 2 служит для получения аэрозоля анализируемого раствора. Раствор вводится через капилляр 8 и пневматически распыляется окислителем, который подается через капилляр 1. Избыток раствора выводится из камеры через сток 7. В камере 3 происходит смешивание окислителя и аэрозоля анализируемого раствора с горючим газом, поступающим через капилляр 4. Горелка 5 служит для получения плазмы пламени 6.

Основным недостатком пламенных источников возбуждения спектров, особенно при использовании горючих смесей с высокой скоростью сгорания, является их взрывоопасность.

Д у г а п о с т о я н н о г о т о к а. Электрической дугой называется форма газового разряда, характеризуемая большой плотностью тока и малым падением потенциала вдоль столба разряда. При дуговом разряде постоянного тока, наряду с положительным столбом разряда, который излучает основное количество световой энергии, несколько отличное по спектральному составу, свет испускается также приэлек-тродными областями. Дуга постоянного тока (рис. 29) питается постоянным напряжением 170…250 В и мощностью 2…5 кВт. Зажигание дуги осуществляется соприкосновением электродов r, концы которых при этом разогреваются. При последующем разведении электродов в промежутке между их концами появляются раскаленные ионизируемые газообразные продукты испарения материала электродов, обеспечи-вающие прохождение тока через область дуги. Плотность тока регулируется реостатом и контролируется амперметром.

Устойчивое горение дуги возможно при условии включения последовательно с дугой балластного сопротивления, превышающего сопротивление дуги. Температура дуги зависит от материала электродов. Так, при изготовлении их из угля она составляет 7000 К, введение калия снижает температуру дуги до 4100 К, натрия – 4300 К, кальция – 4800 К, цинка – 6200 К, меди и железа – 5300 К. Дуга постоянного тока нашла широкое применение в основном при анализе руд и минералов. Главное ее преимущество

– стабильность горения.

–  –  –

Д у г а п е р е м е н н о г о т о к а. Питание дуги переменного тока, представленной на рис. 30, невозможно, так как за время каждого полупериода электроды успевают остывать, т.е. разряд прекращается. Поэтому советским ученым Н.С. Свентицким была разработана схема, представленная на рис. 31.

Схема содержит вспомогательный высокочастотный контур L, который питается от повышающего трансформатора T. В момент пробоя разрядника Р в катушке индуктивности L возникает импульс и происходит пробой между электродами r. Реостаты R1 и R2 служат для регулировки токов дуги и повышающего трансформатора T соответственно. Конденсатор C1 препятствует прохождению токов высокой частоты в сеть. С момента включения схемы напряжение на электродах начинает расти (промежуток времени а – б, рис. 32).

В момент времени б происходит пробой разрядника. Напряжение на электродах падает от значения U2 до U1. За время б – в дуга горит, как и при питании постоянным током. В момент времени в напряжения сети не хватает для питания дуги и она гаснет, при этом напряжение на электродах несколько повышается и становится равным сетевому. Вновь дуга загорается в момент времени г после ее поджига активизатором (пробой разрядника). Весь процесс повторяется, но катод и анод меняются местами.

–  –  –

Рис. 32. Изменение напряжения на электродах дуги переменного тока И с к р а. Разряд между электродами r при замкнутом промежутке P происходит тогда, когда конденсатор C накапливает достаточный заряд для пробоя промежутка (рис. 33).

Трансформатор T является повышающим. Если при дуговом разряде плотность тока практически не зависит от его мощности, то в искровом разряде диаметр токопроводящего канала не успевает следовать за изменением силы тока, т.е. плотность последнего увеличивается.

Период колебаний определяется выражением

–  –  –

Рис. 33. Схема искрового генератора Температура плазмы пропорциональна этой величине. Поэтому в схеме, представленной на рис. 33, индуктивность L и емкость C служат для установки той или иной плотности тока, т.е. той или иной температуры плазмы. При малых индуктивностях средняя температура искры составляет 10 000…12 000 К и в ней возбуждаются преимущественно ионы атомов, а при больших – температура разряда падает и приближается к дуговой 5000…7000 К. Увеличение напряжения на обкладках конденсатора C растет до тех пор, пока не наступит пробой разрядника P, пробойное напряжение которого устанавливается меньше, чем на электродах r. Вся разность потенциалов становится приложенной к последним. Таким образом, разряд между ними благодаря разряднику P будет происходить каждый раз при одном и том же напряжении на электродах r. Rш – сопротивление очень большой величины, шунтирующее электроды.

Искровые источники целесообразно применять для анализов трудновозбудимых элементов, при изучении излучения ионов, когда необходимо исследовать образец на малой его площади, т.е. провести локальный анализ, при изучении состава образцов без их разрушения и т.д.

Получить дуговой разряд или низковольтную искру можно с помощью генератора ДГ-2, внешний вид которого представлен на рис. 34, а электрическая схема – на рис. 35.

–  –  –

4.2. ПОНЯТИЕ СПЕКТРАЛЬНОЙ ЛИНИИ И ЕЕ ХАРАКТЕРИСТИКИ

Свойства различных состояний атомов описывает квантовая механика, в основу которой положены постулаты, сформулированные одним из ее основоположников, датским физиком Нильсом Бором.

1. Электрон в атоме может находиться только в стационарных состояниях, при которых атом не излучает энергии.

2. Из всех возможных состояний в атоме осуществляются только те, для которых момент колиh чества движения M = mvr = n = nh ; где m, v, r – масса, скорость и радиус орбиты электрона атома;

– квантовое число.

n = 1, 2, 3,...

3. Излучение или поглощение энергии атомов происходит только при переходе из одного стационарного состояния в другое в виде фотона:

hij = Ei E j, где h – постоянная Планка; Ei и E j – энергия атома в исходном и конечном стационарных состояниях;

– частота излучения при переходе из i-го состояния в j-е состояние.

ij При этом, если Ei E j, происходит поглощение атомами энергии, а если Ei E j – излучение. В последнем случае говорят, что появилась спектральная линия. Поскольку энергетические состояния электронов в атомах являются строго специфичными и определяются их сортом, то эта появляющаяся линия является их строгой характеристикой. Совокупность спектральных линий, определяющих атом данного сорта, называют его спектром.

Количество энергии, которое излучается в единицу времени возбужденными атомами, носит название интенсивности спектральной линии. Она определяется уравнением:

–  –  –

где N i – число атомов в единице объема в i-м состоянии; Aij – вероятность спонтанного перехода атома из j-го возбужденного состояния в i-е с меньшей энергией; k – постоянная Больцмана; T – температура среды.

Поскольку выражение (4.1) включает трудноконтролируемое значение температуры, справедливость его возможна лишь в условиях термодинамического равновесия и малого числа возбужденных атомов и оно не может быть использовано для целей количественных спектральных исследований. В связи с этим Ломакиным и Шайбе была предложена формула

–  –  –

h где t – среднее время жизни атома в возбужденном состоянии, следует, что E.

2t Это значит, что длина волны реальной спектральной линии не может быть строго определена, т.е.



Pages:   || 2 | 3 |


Похожие работы:

«http://www.icetrade.by/tenders/print_view/250482?ajax=1 Процедура закупки № 2015-250482 Открытый конкурс Общая информация Отрасль Машиностроение Станкостроение Краткое описание предмета Cтанок консольно-фрезерный универсальный в количестве 1 комплекта, с техническими закупки характеристиками и параметрами, указанными ниже: Сведения о заказчике, организаторе Полное наименование Открытое акционерное общество Гомельтранснефть Дружба заказчика, место Республика Беларусь, Гомельская обл., Гомель,...»

«Научно-издательский центр ИНФРА-М ЭФФЕКТИВНЫЕ РЕШЕНИЯ ДЛЯ ВУЗА ВСЕ ЗНАНИЯ В ОДНО КАСАНИЕ Научно-издательский центр ИНФРА-М представляет электронно-библиотечную систему ZNANIUM.COM Что такое Znanium? Это крупные научные и учебные издательства, с которыми вы уже давно знакомы, по их книгам выучилось не одно поколение специалистов во всех областях знаний. Теперь эти издательства пришли к вам в новой цифровой форме с новыми возможностями! Вот перечень основных издательств, которые разместили на...»

«УДК 621.98.044 ©Фролов Е.А., Носенко О.Г., Дерябкина Е.С.ВЫБОР ЭФФЕКТИВНОГО МЕТОДА ИНТЕНСИФИКАЦИИ ПРОЦЕССОВ ФОРМООБРАЗОВАНИЯ ЛИСТОВЫХ ДЕТАЛЕЙ СЛОЖНЫХ ФОРМ ИЗ ВЫСОКОПРОЧНЫХ КОНСТРУКЦИОННЫХ СТАЛЕЙ 1. Введение В современных условиях конкурентоспособность техники и технологии определяется их отдачей. Поэтому сохраняется принятая в отечественной и мировой практике машиностроения тенденция постоянного совершенствования конструкции и поиск принципиально новых конструктивных решений при создании...»

«HEWLETT-PACKARD Дайджест мировых новостей логистики №31 18 июня – 25 июня Отдел по связям с общественностью АО «НЦРТЛ» Дайджест мировых новостей логистики №31 18 июня – 25 июня Отдел по связям с общественностью www.kazlogistics.kz 18 июня – 25 июня НОВОСТИ ЖЕЛЕЗНОДОРОЖНОГО ТРАНСПОРТА АО «НК «КТЖ» намерено выйти на новые российские рынки с продукцией железнодорожного машиностроения КТЖ – лидер по поддержке инновационной деятельности КТЖ благодаря изобретательским способностям рационализаторов...»

«СОВЕРШЕНСТВОВАНИЕ МЕХАНИЗМА ОЦЕНКИ СТОИМОСТИ ВОССТАНОВИТЕЛЬНОГО РЕМОНТА ПОВРЕЖДЕННЫХ АВТОМОБИЛЕЙ В СФЕРЕ ОБЯЗАТЕЛЬНОГО СТРАХОВАНИЯ Зубриський Сергей Григорьевич канд. техн. наук, профессор, Университет машиностроения (МАМИ), 107023, Россия, г. Москва, ул. Большая Семеновская, дом № 38 E-mail: sgzubr@yandex.ru Тупицын Игорь Игоревич магистрант, Университет машиностроения (МАМИ), 107023, Россия, г. Москва, ул. Большая Семеновская, дом № 38 E-mail: aeons@iznet.org IMPROVING MECHANISM OF VALUATION...»

«Серенков П.С. публикации Основные публикации Монография: 1. Серенков, П.С. Методы менеджмента качества. Методология описания сети процессов: монография / П.С. Серенков, А.Г. Курьян, В.Л. Соломахо. – Минск: БНТУ, 2006. – 484 с.Основные статьи в научных журналах: 1. Серенков, П.С. Качество как объект менеджмента / П.С. Серенков // Экономика, финансы, управление. – 2001. – № 1. – С. 27–33.2. Опыт разработки, внедрения и развития системы менеджмента качества в соответствии с требованиями МС ИСО...»

«СТРАТЕГИЯ развития транспортного машиностроения Российской Федерации в 2007-2010 годах и на период до 2015 года Москва Содержание ВВЕДЕНИЕ 1. СИСТЕМНАЯ ПРОБЛЕМА РОССИЙСКОГО ТРАНСПОРТНОГО МАШИНОСТРОЕНИЯ РОССИИ 2. ПЕРСПЕКТИВЫ РАЗВИТИЯ ОТРАСЛИ И НАПРАВЛЕНИЯ РЕШЕНИЯ СИСТЕМНОЙ ПРОБЛЕМЫ 2.1. Приоритетные направления структурного развития отрасли 2.2. Приоритетные направления развития продукции отрасли 2.3. Формирование комплекса мероприятий по созданию благоприятных условий для развития транспортного...»

«В.И. Маслов, профессор, д.т.н. Заведующий кафедрой «Конструкторско-технологические инновации» Института металлургии, машиностроения и транспорта «Оценка бизнес-потенциала научнотехнической разработки» Санкт-Петербургский государственный политехнический университет Исходя из общего определения понятия «потенциал» (от латинского слова «potentia») как «источники, возможности, средства, запасы (ресурсы), которые могут быть приведены в действие и использованы для решения какойлибо задачи или...»

«машиностроение Мартынов О.Ю. СТРАТЕГИЧЕСКОЕ УПРАВЛЕНИЕ В СИСТЕМЕ ОБЕСПЕЧЕНИЯ КАЧЕСТВА СПИСОК ЛИТЕРАТУРЫ assessment series, 1999.1. Свиткин М. З. Интегрированные системы менеджмента / 8. SA 8000. Social Accountability, 1998. М.З. Свиткин // Стандарты и качество. – 2004. – № 2. – 9. ИСО/ТУ 16949:2002. Системы менеджмента качества. С. 56 61. Особые требования по применению ИСО 9001:2000 в авЕгорова Л. А. Проблемы и перспективы интеграции томобильной промышленности и организациях, произвосистем...»

«МАШИНОСТРОЕНИЕ И МАШИНОВЕДЕНИЕ МАШИНОСТРОЕНИЕ И МАШИНОВЕДЕНИЕ УДК 621.833.001.24 ТЕОРИЯ ЗАЦЕПЛЕНИЯ ЗВЕНЬЕВ ДВУХВЕНЦОВЫХ ЧЕРВЯЧНЫХ ПЕРЕДАЧ Н. И. РОГАЧЕВСКИЙ Государственное учреждение высшего профессионального образования «Белорусско-Российский университет», г. Могилев Введение Для привода рабочих органов многих машин и технологического оборудования используют червячные передачи, отличающиеся от других механических передач высокой нагрузочной способностью, широким интервалом передаточных чисел в...»

«ГОДОВОЙ ОТЧЕТ ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «АТОМНОЕ И ЭНЕРГЕТИЧЕСКОЕ МАШИНОСТРОЕНИЕ» (ОАО «АТОМЭНЕРГОМАШ») За 2011 год ОГЛАВЛЕНИЕ ОБЩАЯ ИНФОРМАЦИЯ ОБ ОТЧЕТЕ ОБРАЩЕНИЕ РУКОВОДСТВА КОМПАНИИ Обращение Председателя Совета Директоров ОАО «Атомэнергомаш» 2.1 6 Обращение Генерального директора ОАО «Атомэнергомаш» 2.2 7 ОБЩИЕ СВЕДЕНИЯ Общая информация и география бизнеса 3.1 9 Краткая историческая справка 3.1.1 9 Отрасли деятельности и Предприятия группы 3.1.2 11 География бизнеса 3.1.3 13 Роль и...»

«http://www.icetrade.by/tenders/print_view/236833?ajax=1 Процедура закупки № 2015-236833 Открытый конкурс Общая информация Отрасль Машиностроение Станкостроение Краткое описание Станок зубофрезерный для обработки прямозубых и косозубых колёс, звёздочек, предмета закупки червячных колёс червячными фрезами методом обката. (технические требования и комплектация согласно Приложению 1 к настоящей документации) Сведения о заказчике, организаторе Полное наименование Открытое акционерное общество...»

«МАШИНОСТРОЕНИЕ И СМЕЖНЫЕ ОТРАСЛИ МАШИНОСТРОЕНИЕ И СМЕЖНЫЕ ОТРАСЛИ Математическое моделирование рабочего процесса камеры ракетного двигателя малой тяги на кислородно-водородном топливе В.Л. Салич, Южно-Уральский государственный университет (НИУ) В статье представлены полученные в ходе РДМТ, успешно применялось математическое модеисследований рекомендации, касающилирование, например [3–8]. еся математического моделирования процессов в С помощью численного моделирования внуткамерах...»

«Техникалыќ єылымдар 5. Сидоров А.И. Восстановление деталей машин напылением и наплавкой. М.: Машиностроение, 1987.– 192 c.6. Клименко Ю. В. Электроконтактная наплавка. М.: Металлургия, 1998. 128 с. REFERENCES 1. The use of modern materials for the manufacture and repair of machinery parts /N.R. Scholl, V.D. Losev, L.Y. Ikonnikova, V.Y. Prokhorov. – Ukhta: UGTU, 2004. 251 p. 2. Tolstov I.A., Korotkov V.A. Handbook on surfacing. – Chelyabinsk: Metallurgy, 1990. 341 p. 3. Ginberg A.M. Increasing...»

«Анализ состояния инновационной деятельности российского машиностроения 41 УДК 621 М.Р. Ибрагимов** АНАЛИЗ СОСТОЯНИЯ ИННОВАЦИОННОЙ ДЕЯТЕЛЬНОСТИ РОССИЙСКОГО МАШИНОСТРОЕНИЯ В статье рассматриваются проблемы в российском машиностроении, проводится анализ состояния инновационной деятельности в данном секторе экономики. Предложен вариант существенного улучшения положения в машиностроении за счет перераспределения финансовых потоков. Ключевые слова: инновационная деятельность, технология,...»





Загрузка...


 
2016 www.os.x-pdf.ru - «Бесплатная электронная библиотека - Научные публикации»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.