WWW.OS.X-PDF.RU
БЕСПЛАТНАЯ ЭЛЕКТРОННАЯ БИБЛИОТЕКА - Научные публикации
 


Pages:   || 2 | 3 | 4 | 5 |

«Г.Н. Чупахина СИСТЕМА АСКОРБИНОВОЙ КИСЛОТЫ РАСТЕНИЙ Калининград КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ Г.Н. ...»

-- [ Страница 1 ] --

КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Г.Н. Чупахина

СИСТЕМА АСКОРБИНОВОЙ

КИСЛОТЫ РАСТЕНИЙ

Калининград

КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Г.Н. Чупахина

СИСТЕМА АСКОРБИНОВОЙ

КИСЛОТЫ РАСТЕНИЙ

Монография

Калининград

Чупахина Г.Н. Система аскорбиновой кислоты растений: Монография. - Калинингр. ун-т. - Калининград, 1997. - 120 с. - ISBN 5-88874-063-2.



В монографии дана характеристика системы аскорбиновой кислоты растений, включающей аскорбиновую, дегидроаскорбиновую и дикетогулоновую кислоты, а также ферменты, окисляющие и восстанавливающие аскорбат. Приведены результаты исследования действия полихроматического и монохроматического света на компоненты системы, обсуждается вопрос о фоторецепторе светозависимого синтеза аскорбиновой кислоты. Рассматриваются пути биосинтеза аскорбата, компартментация данного процесса и субклеточная локализация кислот системы аскорбиновой кислоты. Исследована зависимость биосинтеза указанных кислот от фотосинтеза и дыхания. Впервые исследовалась дикетогулоновая кислота как компонент системы аскорбиновой кислоты. Приводится метод получения альбиносных проростков, их физиологобиохимическая характеристика, рекомендация использования в качестве модели для изучения светозависимых процессов не связанных с фотосинтезом.

Для физиологов, биохимиков, преподавателей вузов, аспирантов и студентов.

Иллюстр. 30. Библиогр.: 461 назв.

Рецензент - зав. отделом химии фотосинтеза Института биоорганической химии и нефтехимии АН Украины, чл.-кор. АН Украины А.А. Ясников.

Печатается по решению редакционно-издательского Совета Калининградского государственного университета.

ISBN 5-88874-063-2 © Калининградский государственный университет, 1997 Галина Николаевна Чупахина

СИСТЕМА АСКОРБИНОВОЙ КИСЛОТЫ РАСТЕНИЙ

Монография Лицензия № 020345 от 27.12.1991 г.

Редактор Л.Г. Ванцева.

Оригинал-макет подготовлен Д.В. Голубиным.

Подписано в печать 25.12.1996 г. Формат 6090 1/16.

Бумага для множительных аппаратов. Усл. печ. л. 7,5.

Уч.-изд. л. 8,0. Тираж 200 экз. Заказ 92.

Калининградский государственный университет, 236041, г. Калининград, ул. А. Невского, 14.

ВВЕДЕНИЕ

Аскорбиновая кислота - уникальное полифункциональное соединение. Обладая способностью обратимо окисляться и восстанавливаться, она принимает участие в важнейших энергетических процессах растительной клетки - фотосинтезе [341, 378] и дыхании [451, 362]; является признанным антиоксидантом [8].

Несомненно ее участие в процессах роста, цветения, вегетативной и репродуктивной дифференциации [230], в водном обмене [151], регуляции ферментативной активности [46], стимуляции реакцийметаболизма, связанных с обменом нуклеиновых кислот и синтезом белка [207, 365], в защитных реакциях растений [200, 2].

Особый интерес для биотехнологии представляет факт накопления аскорбиновой кислоты в культуре растительных тканей и активации их роста аскорбатом [288, 295]. В связи с этим знание условий, формирующих пул аскорбиновой кислоты зеленых растений, необходимо не только для программированного получения высоковитаминных растительных продуктов, что само по себе является важным для решения проблемы качества пищи, но и для понимания механизмов, определяющих продуктивность растений.

Возросший интерес к аскорбиновой кислоте как к лекарственному препарату [257] обусловлен противовирусным [395] и противоопухолевым действием аскорбиновой кислоты и ее дериватов [450], а также авторитетной рекламой дважды лауреата Нобелевской премии Л.Полинга [116]. При определении витаминной ценности растительного сырья витамин С определяется как сумма взаимопревращающихся восстановленной и окисленной форм аскорбиновой кислоты [152]. Однако дегидроаскорбиновая кислота не всегда переходит в аскорбиновую, так как разрыв ее лактонового кольца ведет к необратимому образованию дикетогулоновой кислоты, не обладающей витаминной активностью и практически не исследованной у растений. Поэтому для всесторонней оценки роли аскорбиновой кислоты в метаболизме растений необходимо одновременное исследование всей системы аскорбата, включающей вышеназванные органические кислоты, а также ферментные системы, способствующие окислению и восстановлению аскорбиновой кислоты. Именно такие подходы к исследованию витамина С [258, 430] являются наиболее перспективными.

Со времени открытия аскорбиновой кислоты интерес к этому соединению не проходит, хотя в последние годы он значительно снизился. Но это не говорит о том, что решены все проблемы, связанные с аскорбатом. Они есть. В частности, до сих пор не выяснены пути синтеза аскорбиновой кислоты, не до конца ясна ее роль в жизни автотрофных организмов, являющихся продуцентами и поставщиками витамина С для человека. Решение этих вопросов требует нового уровня исследований, чему, несомненно, может служить изучение аскорбиновой кислоты как компонента системы органических кислот: аскорбиновая дегидроаскорбиновая дикетогулоновая кислота.

В предлагаемой работе обобщены литературные данные и результаты собственных исследований автора, касающиеся путей биосинтеза аскорбиновой кислоты и субклеточной локализации аскорбиновой, дегидроаскорбиновой и дикетогулоновой кислот. Рассматривается действие полихроматического и монохроматического света на компоненты системы, зависимость биосинтеза анализируемых кислот от фотосинтеза и дыхания. Для решения этих вопросов использовались данные по биосинтезу кислот в проростках ячменя с измененным пигментным составом, в экспериментально полученных альбиносных проростках, а также при ингибировании и стимуляции дыхания интермедиатами цикла Кребса.





СПИСОК СОКРАЩЕНИЙ

АК - аскорбиновая кислота АО - аскорбатоксидаза ГН - глютатион восстановленный ГS-SГ - глютатион окисленный ДАК - дегидроаскорбиновая кислота ДКГК - дикетогулоновая кислота ДКС - дальний красный свет 2,4 - ДНФ - 2,4 - динитрофенол ИУК - индолилуксусная кислота КС - красный свет МДАК - монодегидроаскорбиновая кислота НАД - никотинамидадениндинуклеотид НАДФН+Н+ - никотинамидадениндинуклеотидфосфат восстановленный ОПФЦ - окислительный пентозофосфатный цикл ПААГ - полиакриламидный гель СМ - стрептомицин УФ - ультрафиолет ФАР - физиологически активная радиация Фдк - фитохром с максимумом поглощения в области дальнего красного света около 730 нм ФС I - фотосистема I ФС II - фотосистема II Хл - хлорофилл ЦТК - цикл трикарбоновых кислот ЭТЦ - электрон-транспортная цепь

Глава 1. КИСЛОТЫ И ФЕРМЕНТЫ СИСТЕМЫ АСКОРБИНОВОЙ КИСЛОТЫ

В 1927 году A.Сцент-Гиорги впервые выделил из некоторых растений и коры надпочечников неустойчивое вещество с сильно выраженными восстановительными свойствами, которое сначала назвал гексуроновой кислотой, затем аскорбиновой, учитывая ее антискорбутное (скорбут - цинга) действие. Химическая формула АК была предложена в 1933 году Хирстом и независимо от него Эйлером, а в конце 1933 г. ее правильность окончательно доказана Михеелем.

Химический синтез АК осуществлен Рейхштейном в 1932 г., когда структура ее еще не была известна. В 1933 г. Рейхштейн и Хаворс с Хирстом опубликовали методы синтетического получения АК. История открытия и изучения АК подробно описана Б.А. Кудряшовым [69].

В химическом отношении АК является лактоном 2,3-диэнол-l-гулоновой кислоты с эмпирической формулой С6Н8О6.

Она обладает сильно выраженными восстанавливающими свойствами благодаря наличию в молекуле диэнольной группы:

С ОН

–  –  –

Переход l-АК в ДАК двухэтапный. На первом этапе две молекулы l-AK дают начало двум молекулам монодегидроаскорбиновой кислоты. Далее они дисмутируют: одна молекула превращается в ДАК, другая - в l-АК [60].

Лактоновое кольцо в молекуле l-AK стабильно, а в ДАК легко гидролизует с образованием кислоты с открытой цепью - 2,3-дикетогулоновой кислоты [84].

Последняя может подвергаться окислительному распаду под действием гипоиодида натрия с образованием щавелевой и треоновой кислот:

–  –  –

Введенная экзогенно дикетогулоновая кислота при освещении хлоропластов фотоокисляется [453]. Под влиянием окисляющих АК ферментов происходит декарбоксилирование ДАК и ДКГК с образованием l-ксилоновой и l-ликсоновой кислот.

У растений, аккумулирующих щавелевую кислоту (шпинат, бегония, кислица), окисление введенной 1-14С-АК или 1-14С-ДАК происходит с образованием щавелевой и винной кислот. В проростках ячменя, которые не накапливают щавелевую кислоту, включение метки в последнюю происходит слабо. Отмечено, что метка из 1-14C-ДАК легко включалась в щавелевую кислоту шпината и кислицы, а 1-14С-ДКГК очень медленно метаболизировалась в щавелевую кислоту.

Вероятно, для образования щавелевой кислоты существенно наличие лактонового кольца в предшественнике [453].

У герани также два первые атома углерода АК включаются в молекулу щавелевой кислоты, а С4-фрагмент - в винную кислоту [445, 448]. Однако судьба двух первых атомов углерода АК может быть иной. Например, у винограда отрезок цепи с первого по четвертый атом углерода включается в l-винную кислоту, а оставшийся С2-фрагмент повторно вовлекается в цикл гексоз и продуктов их метаболизма. [445, 383]. При этом углерод первого атома АК может высвобождаться в форме CO2 [272].

Изолированные листья Parthenocissus quinquefolia L метаболизируют АК с образованием l-треоновой и винной кислот. Показано, что треоновая кислота не является промежуточным метаболитом обмена аскорбата, превращающегося в винную кислоту [271]. Такими метаболитами могут быть l-идониновая, 2-кето-lидониновая и 5-кето-l-идониновая кислоты. В молодых тканях винограда введенная АК превращается в 5-кето-l-идониновую кислоту через 2-кето-lидониновую и l-идониновую кислоты. Из С4-фрагмента 5-кето-l-идониновой кислоты далее синтезируется l-(+)винная кислота. Считается [318], что именно lАК. является физиологическим интермедиатом на пути биосинтеза винной кислоты в листьях винограда. Радиоактивность от 5-кето-l(6-14С)идониновой кислоты обнаруживалась в сахарах и нерастворимом осадке [381, 382]. Следовательно, обмен АК в растениях связан с органическими кислотами и углеводами, которые в одних условиях являются субстратом в биосинтезе АК, а в других для их образования используются фрагменты молекулы АК, полученные после ее деградации.

Таким образом, АК в растительных тканях может присутствовать в восстановленной форме, окисленной и в виде нестабильной монодегидроаскорбиновой кислоты. Восстановленная и окисленная АК находятся в свободном состоянии.

Известны три связанные формы АК: аскорбиген - соединение АК с полипептидом; комплекс АК с витамином Р и, вероятно, еще с каким-то неизвестным веществом; третья связанная форма АК - это соединение АК с нуклеиновой кислотой через посредство минерального железа [158].

Обычно в растениях преобладает восстановленная форма АК. Накоплению ДАК препятствует ее нестабильность (особенно при рН выше 5), поэтому при измельчении тканей наблюдается быстрая потеря ДАК. Тем не менее измеримые количества ДАК присутствуют во многих тканях. Содержание окисленной формы АК в разных условиях неодинаково и иногда достигает высоких значений.

Так, в яблоках в начале созревания ДАК составляла 55% от общего количества АК и ДАК, а в конце - только 5-6% [35]. Соотношение двух форм АК может служить показателем физиологического состояния растений: высокая интенсивность процессов жизнедеятельности - больше восстановленной АК, низкая интенсивность - растет содержание дегидроформы [68,34].

Для красных водорослей показано сезонное изменение соотношения АК/ДАК. В апикальной части таллома птерокладии оно достигало максимума в декабре, а к лету значительно снижалось. В базальной части соотношение АК/ДАК в течение года было низким и мало менялось [303].

АК в чистых растворах с сильно кислой реакцией среды и в растительных соках с нормальной кислотностью при рН ниже 7 не способна к самоокислению.

Однако в других растворах на воздухе АК быстро окисляется. Катализирующее действие на процесс неферментативного окисления АК оказывают гидроксильные ионы, двух- и трехвалентные металлы, особенно медь.

Известны четыре ферментные системы, принимающие участие в окислении АК. Это специфическая оксидаза АК - аскорбатоксидаза (1.10.3.3), цитохромная система, полифенолоксидаза (1.14.18.1) в присутствии полифенолов и пероксидаза (1.11.1.7) в присутствии перекиси водорода [35].

Аскорбатоксидаза - медьсодержащий фермент, окисляет АК кислородом воздуха, но имеет ограниченное сродство к кислороду [26]. Механизм окисления АК пероксидазой и полифенолоксидазой - с помощью хинонов.

Коферментами пероксидаз являются различные фенольные соединения, они окисляются до хинонов, последние окисляют АК до ДАК:

кислород + фенол хинон;

хинон + АК ДАК + фенол.

Окислительно-восстановительные превращения АК ДАК тесно связаны с системой глютатиона: 2ГSН ГS - SГ + 2Н+, в которой восстановление окисленного глютатиона катализируется ферментом глютатионредуктазой (1.6.4.2), а окисление идет при участии глютатиондегидрогеназы (аскорбата) (1.8.5.1) [409].

Есть мнение, что превращение ДАК в АК - неферментативный процесс [59].

Окислительно-восстановительная система АК у эвглены, по данным Шигеоки и др. [402, 403], включает следующие компоненты:

–  –  –

Таким образом, система АК растений включает АК, монодегидро-АК, ДАК [239], которые обладают витаминной активностью. ДКГК, образующаяся из ДАК, уже лишена биологической активности. Количественный анализ ДКГК может служить показателем направленности процессов в системе АК ДАК, которая зависит от активности ферментов, окисляющих AК: аскорбатоксидазы, полифенолоксидазы, цитохромоксидазы и пероксидазы, а также ферментов, восстанавливающих кислоты системы АК: монодегидро-l-аскорбатредуктазы и дегидро-l-аскорбатредуктазы. В качестве восстановителя выступает система глютатиона ГS - SГ Г - SН и НАДФН+Н+. Высокий уровень АК стимулирует биосинтез аскорбатоксидазы [240,3] и подавляет аскорбатредуктазу [3].

ДКГК растений, рассматриваемая нами в системе АК, практически не исследована, исключая единичные работы [85,405,279,334,205] и работы автора [181, 174, 178], хотя следует подчеркнуть, что ее уровень дает информацию для понимания функционирования системы АК ДАК.

Глава II. ФИЗИОЛОГИЧЕСКАЯ РОЛЬ АСКОРБИНОВОЙ КИСЛОТЫ

В ЖИЗНИ АВТОТРОФНЫХ ОРГАНИЗМОВ

2.1. Участие аскорбиновой кислоты в энергетических процессах растений В хлоропластах содержится значительное количество АК, по весу не уступающее содержанию хлорофилла, а выраженное в молях даже превосходящее его [123]. Этот факт, а также способность АК обратимо окисляться и восстанавливаться могут определять ее участие в важнейшем энергетическом процессе зеленых растений - в фотосинтезе. Действительно, многие экспериментальные исследования подтверждают такую возможность. В частности, показано, что аскорбат способствует биосинтезу хлорофилла [237, 218] и восстановлению его в темноте при участии активной МДАК [38]. В семенах японской редьки при 48часовом освещении возрастало содержание АК и пропорционально - содержание хлорофилла. Между количеством хлорофилла и АК отмечалась линейная зависимость при коэффициенте корреляции 0,96 [437].

Основываясь на опытах по обратимому фотохимическому восстановлению хлорофилла АК в растворах пиридина, А.А.Красновский [62, 66] полагал, что этот процесс может представлять одну из стадий фотосинтеза. Подтверждая наличие реакции А.А. Красновского, в результате которой образовывалась красная восстановленная форма хлорофилла при освещении его растворов в пиридине в присутствии АК, Т.Баннистер [213] уточнил, что донором электрона при фотовосстановлении хлорофилла может быть анион АК, возникающий при ее диссоциации в среде воды и пиридина.

На роль АК как донора электронов в фотосинтетических реакциях или в реакциях, тесно связанных с ними, указывал и Л.Мапсон [325]. Он считал, что АК может участвовать в переносе электрона от пластохиона к цитохрому f. Другие авторы также рассматривали АК как переносчика электронов при фотосинтезе [250, 335, 343]. По мнению Л.Мапсона, действительным переносчиком электронов является нестабильная МДАК, способная участвовать в цепи реакций нециклического фосфорилирования в растениях [324].

При изучении фотоокисления аскорбата изолированными хлоропластами шпината было показано [221], что АК может замещать воду как донор электронов для ФС II и что обе световые реакции и электрон-транспортная система между ними принимают участие в фотоокислении АК.

В ныне признанных схемах циклического и нециклического переноса электронов в процессе фотосинтеза среди переносчиков электронов нет АК, но в модельных системах АК часто используется как экзогенный донор электрона для ЭТЦ фотосинтеза [298, 376, 384]. При блокировании переноса электронов между ФС I и ФС II дихлорфенилдиметилмочевиной электроны от АК могут поступать в ФС I [85].

АК необходима для фотофосфорилирования [51]. В ее присутствии лучше сохраняется без инактивации фотосинтетический аппарат клетки, увеличивается фосфорилирование изолированных хлоропластов [227, 203, 204, 249, 333], стабилизируется фотофосфорилирование фрагментов фотосинтетических мембран [341].

Таким образом, участие АК в процессе фотосинтеза может проявляться или в биосинтезе фотосинтетического аппарата растительной клетки, или в его стабилизации, что будет способствовать повышению его фотохимической активности, а в конечном итоге - фотофосфорилированию.

Предположение о том, что, обладая окислительно-восстановительными свойствами, АК может участвовать в процессе дыхания, впервые было выдвинуто А.Сцент-Дьерди в 1927 г. Позднее ряд исследователей рассматривал АК как существенный фактор дыхания [77, 328, 323]. К.Е.Овчаров [95] отмечал, что не случайно при прорастании семян имеет место энергичное образование АК, ведь энергия дыхания прорастающих семян очень высока.

Усиление дыхания под действием АК наблюдали многие авторы [313, 43, 46]. Так, в присутствии аскорбата увеличивалось поглощение кислорода изолированными проростками ячменя [278], суспензией хлоропластов шпината [199] и хлореллы, находящейся в темноте [59], срезанными стеблями томатов [377].

В процессе воздействия на дыхание важная роль принадлежит соотношению АК/ДАК, так как последняя, функционируя как переносчик водорода в дыхательной цепи растений [323], отвлекает часть водорода окисляемого субстрата, что, вероятно, и приводит к торможению дыхания. Показано, что ДАК тормозит активность дегидрогеназ, интенсивность восстановительных синтезов, образование макроаргических связей. Поэтому повышение отношения АК/ДАК за счет уменьшения ДАК сопровождается усилением дыхания и роста растительных клеток [434].

При окислении субстрата за счет отнятия водорода последний при участии переносчиков передается в зависимости от вида растения, сорта или стадии индивидуального развития на цитохромную систему, флавиновую или аскорбатоксидазу.

Этот фермент может отдать водород непосредственно на кислород и выполнить функцию терминальной оксидазы [134]:

–  –  –

Так как аскорбатоксидаза имеет ограниченное сродство к кислороду, можно полагать, что окисление через систему АК/ДАК имеет подчиненное значение.

Однако Мапсон и Мустафа [328] нашли, что у проростков гороха дыхание на 25% осуществляется за счет системы аскорбатоксидазы. При прорастании семян гороха примерно через пять дней в них появлялась аскорбиноксидазная система, для функционирования которой требовалась АК, восстановленный глютатион, НАД+Н+ и в качестве окисляемого субстрата - яблочная кислота. Аскорбиноксидазная система проростков была связана с растворимой частью цитоплазмы и не обнаруживалась в митохондриях.

По мнению Б.А.Рубина и М.Е.Ладыгиной [134], аскорбатоксидаза участвует и в дыхании хлоропластов, дыхательная цепь которых схематически изображается следующим образом:

–  –  –

В молодых плодах лимона система переноса электронов от дыхательного субстрата - яблочной кислоты на кислород также включает АК, оксидоредуктазу АК и глютатион [410]. Интересно отметить, что, как показано в данной работе, глютатион и АК стимулировали дыхание только в августе - декабре, а в январеиюне угнетали.

Наряду с фактами активации дыхания в присутствии АК известны примеры прямо противоположного ее действия. Так, наблюдалось ингибирование аскорбатом дыхания корней проростков пшеницы в условиях торможения окислительной активности эндоплазматического ретикулума, что, вероятно, связано с усилением аскорбатзависимого перикисного окисления липидов [25]. Возможность стимуляции окисления жирных кислот (особенно стеариновой) в присутствии увеличивающихся доз АК (до 106,56 мМ) была показана ранее [255].

Исследуя взаимосвязь между биосинтезом АК и развитием нечувствительного к цианиду дыхания в срезах клубней картофеля, авторы [206] предположили, что АК необходима для синтеза белков, участвующих в дыхании по нечувствительному к цианиду пути. В связи с чем АК рассматривается как фактор, контролирующий данный тип дыхания.

Таким образом, АК может участвовать в дыхательном процессе как непосредственный переносчик водорода и как ко-фактор, стимулирующий процесс, о чем говорят данные только что рассмотренного исследования. Причем доля дыхания через систему АК/ДАК может колебаться и в некоторых случаях становиться доминирующей. Так, у растений табака, пораженных картофельным вирусом У основной вклад в интенсивность дыхания вносила система глютатион аскорбат [315].



2.2. Влияние аскорбата на экспрессию генома, ферментативную активность, водный режим, ростовые и другие процессы Рассматривая вопрос о физиологической роли АК в растениях, Чикай и Сингх [230] указывают, что АК активирует реакции метаболизма, связанные с обменом нуклеиновых кислот. Это возможно за счет того, что АК играет роль дерепрессора, снимающего репрессорное действие гистонов на ДНК. Таким путем АК освобождает большее число матриц для синтеза мРНК [230, 398].

Наиболее существенное физиологическое воздействие АК на растения обусловлено тем, что она оказывает влияние на ферментативную активность. В ее присутствии активируется тиоглюкозидаза [276], мирозиназа [361], ферментативный гидролиз бензилглюкозинолата [269], протеазы, амилазы, усиливается синтез РНК [231] и активность РНК-азы [338], хотя другие исследования [231] последнее не подтверждают.

Характер действия окисленных форм АК на ферментативную активность может быть иным, чем у восстановленной АК. Так, если восстановленная АК активировала фосфоглюкомутазу семян гороха, то ДАК снижала, а ДКГК - не оказывала влияния [205]. Другой пример: АК и ДКГК в анаэробных условиях не меняли активность ферментных систем, окисляющих сукцинат и глюкоза-6-фосфат, а ДАК при этом оказывала тормозящее действие [334].

Известны случаи ингибирующего влияния на активность ферментов и восстановленной формы АК. Это показано для полифенолоксидазы [4] и протеолитических ферментов, для которых АК является антагонистом [390]. АК вызывала лаг-фазу в активности пероксидазы, которая снималась аскорбатоксидазой [224].

Механизм действия АК на ферментативную активность различных энзимов, вероятно, не одинаков. Активацию претеолитических ферментов аскорбатом объясняют [45, 46] тем, что в присутствии АК восстанавливаются дисульфидные группировки. Стимуляция тиоглюкозидазы может происходить за счет того, что АК вызывает конформационное изменение молекулы фермента, сопровождающееся увеличением сродства к субстрату [276]. Есть мнение [231], что действие АК затрагивает геном растений: она контролирует кодирующий механизм, дифференцированно влияя на синтез РНК и скорость реакций различных ферментов.

Полагают, что АК может играть роль гормона, мобилизующего ферменты.

Таким образом, действие АК на ферментативную активность может проявляться или в изменении активности уже имеющихся ферментов, или в изменении скорости их синтеза.

АК оказывает существенное влияние на водный режим растений. Оно проявляется в торможении поступления воды [44, 431, 433], уменьшении оводнённости [44], в изменении подвижности внутриклеточной воды [153], ускорении транспирации [431, 433, 151]. Хотя в отношении последнего имеются и прямо противоположные данные [44].

Под действием АК изменяется соотношение свободной и связанной воды за счет увеличения свободной. Механизм действия АК на поступление и потерю воды объясняют [44] изменением коллоидно-химических свойств протоплазмы, а также деполяризацией протоплазменных мембран.

Важную роль АК играет в процессах роста и развития растений. Она обеспечивает дружное и более быстрое прорастание семян у пшеницы, овса, кукурузы, кунжута и других растений [241, 230, 408]; активирует рост гипокотиля и корней [432, 400, 236], проростков люпина, растений ячменя [176] и помидоров, семядоли которых были удалены после прорастания [300], пазушных побегов [58].

Имеются данные о стимуляции роста стеблей тростника окисленной формой АК [443]. Определяя содержание АК в 5-7-дневных проростках гороха и кукурузы, Г.Ф.Проценко [122] показала, что растения, отличающиеся быстрым ростом, содержали меньше АК, чем медленно растущие. На основании чего автор полагает, что АК принимает участие в биохимических превращениях, лежащих в основе роста. Действительно, АК меньше используется карликовыми сортами сорго [291], хотя ее содержание, как показано в данной работе, почти одинаково у высоко-, средне- и низкорослого сортов.

Определенную роль АК играет в процессах цветения, вегетативной и репродуктивной дифференциации. Она стимулирует растяжение и морфогенез клетки [385], цветение некоторых растений [166]. Уровень АК резко повышается в начале дифференциации цветков [424]. Обработка растений АК увеличивает количество мужских и женских цветков, но уменьшает их соотношение по сравнению с контролем [396]. Отмечено стимулирующее действие АК на клубнеобразование картофеля и его прорастание [270, 393]. Введение АК в питательную среду значительно усиливало прорастание пыльцы хлопчатника, а обработка растений АК ускоряла образование и уменьшала опадение завязей [96]. Плоды абрикоса и сливы быстрее созревали в присутствии АК [417]. Общее воздействие АК на растение проявляется в задержке старения листьев, то есть распада хлорофилла, РНК, ДНК [252].

Стимулирующее действие АК на ростовые процессы для каждого вида и сорта растений проявляется в определенных пределах концентраций. Обработка семян яровой пшеницы АК в концентрации 0,01% стимулировала ростовые процессы, а в концентрации 0,1% - подавляла их [43]. Для корней кукурузы стимулирующим рост оказался раствор АК в концентрации 0,05-0,005%, а в концентрации 0,05-2,5% - ингибирующим [88]. В ряде опытов [372] стимуляция роста отрезков колеоптилей овса под действием АК наблюдалась в узких пределах концентраций (0,3·10-3 - 4,5·10-3 М).

Наряду со стимуляцией роста при обработке растений АК происходит увеличение содержания последней [245, 184, 168, 264, 248, 253, 407], тем самым увеличивается суммарное воздействие АК на ростовые процессы.

Отмеченное в ряде работ отсутствие стимуляции или даже угнетение роста под действием АК [334, 352, 369, 428, 435] можно объяснить тем, что АК при окислении быстро превращается в ДАК, которая замедляет рост [47, 436]. Так, ингибирование роста, наблюдаемое у карликовых мутантов кукурузы, имело место при более высоком отношении ДАК/АК по сравнению с нормально растущими растениями и, как заключает автор, рост связан с более восстановленным состоянием клетки [340]. Хотя поддерживать его за счет восстановленной АК непросто, так как у карликовых и нормально растущих растений кукурузы наибольшая активность свободного и связанного с клеточными стенками фермента, окисляющего АК, - АО - обнаружена в тканях мезокотиля с активным растяжением клеток. Таким образом, для активного роста растений необходимо высокое содержание восстановленной формы АК при активной АО.

Ингибирующее действие АК на ростовые процессы находит и другое объяснение с учетом результатов следующего опыта: 30-дневные растения пшеницы опрыскивали в течение 11 дней 0,001 и 0,005 М растворами АК [412]. Это привело к снижению высоты растений, количества побегов, массы надземной части, содержания общего количества свободных аминокислот. В связи с чем угнетающее действие АК на рост автор связывает с влиянием ее на синтез аминокислот. Конкретнее, это может проявляться в ингибировании переаминирования глутаминовой кислоты и аланина [398].

Таким образом, в литературе имеются данные о стимуляции и ингибировании ростовых процессов у растений под действием АК. Естественно, это можно объяснить и видовой специфичностью объектов исследования, и конкретными условиями опытов. Но в любом случае для окончательного решения вопроса необходим одновременный анализ всех кислот системы АК: АК ДАК ДКГК, так как свойства АК и ДАК как доноров электронов, источников водорода - прямо противоположные, что, несомненно, сказывается на их воздействии на ростовые процессы. При этом легкость перехода АК в ДАК и наоборот усложняет ситуацию определения действующего начала. Тем не менее большинство авторов разделяет точку зрения о том, что в присутствии АК отмечается стимуляция ростовых процессов.

Механизм действия АК на рост может быть двояким. С одной стороны, АК может выполнять функцию дерепрессора, снимающего репрессию синтеза ДНК гистонами, что определяет ее участие в работе кодирующего механизма клетки [230, 398]. С другой стороны, действие АК на рост может быть опосредовано через ауксины. Показано, что АК может тормозить окисление индолилуксусной кислоты, катализируемое пероксидазой, возможно, прямо связываясь с ИУК. В этом случае АК выступает как конкурентный ингибитор пероксидазы, защищая ИУК от разрушения [357]. Стоит отметить, что существовало мнение, согласно которому специфическая активность ауксинов сама является результатом их первичного воздействия на обмен АК [332].

Особый интерес для биотехнологии, и в частности для отработки методов культивирования растительных тканей, представляют данные о накоплении АК этими тканями и о стимуляции их роста АК [288, 295].

АК оказывает влияние на азотистый обмен растений. Обработка пшеницы раствором АК приводила к уменьшению в листьях количества свободных аминокислот и некоторому повышению содержания нерастворимого азота [412].

Присутствие АК в функционирующих клубеньках вигны говорит о возможном ее участии в процессе азотфиксации [253].

Под действием АК активируются некоторые биосинтетические процессы.

Показана необходимость АК для биосинтеза оксипролинсодержащих белков в растениях [207, 365] и синтеза алкалоидов в недифференцированной каллюсной ткани мака снотворного [295]. АК вызывала снижение окислительно-восстановительного потенциала березы, что ускоряло переход к вегетации, связанной с синтезом биополимеров [144].

Экзогенный аскорбат оказывает действие на разность поверхностных биопотенциалов, сдвигая ее в область положительных значений у набухающих семян кукурузы и пшеницы [139]. АК снимала индуцируемое феррицианидом увеличение рО2 у элодеи и валлиснерии [93].

Таким образом, даже конспективное перечисление тех процессов, в которых принимает участие АК: фотосинтез, дыхание, рост, развитие, устойчивость, экспрессия генома, ферментативная активность, биосинтетические и биофизические процессы, азотфиксация, восстановление нитритов [214] - говорит о том, что АК затрагивает практически все стороны жизнедеятельности растений и относится к числу важнейших полифункциональных соединений автотрофных организмов.

2.3. Защитная функция аскорбиновой кислоты

АК выполняет важную защитную функцию, что прежде всего проявляется в отношении растений к пониженным температурам. В ряде работ показана роль АК в формировании зимостойкости [1, 117, 147, 170, 202]. Это касается интродуцируемых растений [72], плодово-ягодных культур [118, 188] и злаков [122, 126], зимостойкие сорта которых накапливали больше АК, чем менее зимостойкие.

Большое количество работ посвящено исследованию действия АК на иммунные свойства растений, так как считается, что одним из проявлений активного иммунитета растений является нормальное или повышенное образование в них АК [27, 112, 119]. Например, содержание АК в плодах манго, превышающее 40 мг %, увеличивает их устойчивость к поражению бактериями, вызывающими черную пятнистость плодов [439].

Ответной реакцией на многие поражения растений является усиленный биосинтез АК. Так, в листьях виноградной лозы, восприимчивых к антракнозу, обнаружено повышенное содержание АК при высокой активности АО [44]. Высоким был уровень АК в листьях баклажана, подверженных вертициллезному увяданию [389]. Обработка восприимчивых к нематоде сортов томатов раствором АК (45 мМ) на 96-99% снижала их поражаемость. Полагают, что АК используется для синтеза митохондриальных оксипролин-содержащих белков, которые определяют устойчивость томатов к нематоде [208].

Известно мнение, что защитную функцию выполняет не восстановленная АК, а ее окисленная форма [112], так как у устойчивого к пероноспорозу сорта гороха в клетках, расположенных у очага поражения, часть АК была представлена окисленной формой. Она-то, как считают авторы, и служит барьером на пути возбудителя. У восприимчивых сортов гороха в местах проникновения патогена обнаружена только восстановленная форма АК.

Защитное действие АК проявляется и при радиационном поражении растений. Предпосевное облучение сухих семян кукурузы различными дозами рентгеновских лучей (до 22 тыс. рентген) и гамма-лучей (до 33 тыс. рентген) вызывало при больших дозах радиации увеличение у растений содержания АК [145].

В связи с этим предпринимаются попытки выяснить защитное действие пре- и постобработки экзогенной АК на семена, подвергнутые воздействию гамма-излучения [426]. Уже имеются данные о том, что замачивание семян ячменя в 0,5 М растворе АК за час до облучения снижало количество поврежденных облучением проростков и стимулировало их рост [449]. При облучении в летальных дозах количество АК может уменьшаться, возможно, за счет того, что возрастает ее расход на окисление липидов [94, 406].

Столь же актуальным, как исследование защитной роли АК при радиационном облучении, является изучение защитных свойств соединений системы АК в отношении растений, обрабатываемых гербицидами [397]. Для практики сельского хозяйства определенный интерес может представлять тот факт, что коэффициент восстановления - окисления ДАК и АК соответственно был значительно выше у сортов, устойчивых к полеганию [82].

Повышенным уровнем АК отличаются пораженные раком органы картофеля [76]. По данным Р.Маковер [316], АК ослабляет его побурение. Некоторые производные АК - аскорбат калия, аскорбат кальция - способны защищать листья фасоли от повреждений, вызываемых озоном [248]. Каким образом растения могут защищать себя от губительного действия озона, используя АК ? Предполагается, что диффундирующий в листья озон прежде всего реагирует с АК, сконцентрированной в клеточных стенках, и это ограничивает его проникновение в наиболее уязвимые ткани. Другие механизмы инактивации озона в клеточной стенке, такие, как разрушение его в результате образования перекисей и реакций с этиленом, вероятно, не столь эффективны [225].

Экзогенный аскорбат может снимать ингибирование нитратредуктазы в листьях овса в темноте вызванное перекисью [293]. Возможная функция АК и компонентов ее системы в растениях, находящихся в условиях стресса, рассматривается в ряде работ [455, 457-461].

Таким образом, при участии АК формируется устойчивость растений по отношению ко многим неблагоприятным воздействиям: к пониженной температуре, радиации, вирусной и бактериальной инфекции и т.д. Учитывая результаты цитированных выше работ, можно рекомендовать использование обработки АК для борьбы с возбудителями некоторых заболеваний растений. Кроме этого, уровень эндогенной АК может служить тестом, характеризующим устойчивость растений. В перспективе растения, обладающие высоким показателем тестирования по данному признаку, можно использовать при получении растений с заданными свойствами методами соматической гибридизации и генной инженерии.

Глава 3. БИОСИНТЕЗ АСКОРБИНОВОЙ КИСЛОТЫ И ЕЕ ДЕРИВАТОВ

–  –  –

Достаточно хорошо используется в биосинтезе АК и -кетоглутаровая кислота (табл.2): содержание АК в листьях, плавающих на 0,005 М растворе -кетоглутаровой кислоты, на свету увеличилось на 47%, на растворе глюкозы - на

44. В этой серии опытов использовались проростки с более высоким исходным содержанием АК, поэтому прибавка АК в абсолютных величинах не столь высока, как в предыдущих опытах, однако и здесь достоверно показано, что кетоглутаровая кислота используется в биосинтезе АК так же хорошо, как и глюкоза. Использование -кетоглутаровой кислоты в этом процессе идет только на свету.

Положительное действие на биосинтез АК оказала и янтарная кислота (табл.3). Содержание АК в листьях, находившихся на растворах янтарной кислоты и глюкозы, увеличилось соответственно на 51 и 58%, на воде - на 39. В данных опытах выявлено достоверное накопление АК в листьях, находившихся в темноте на растворе янтарной кислоты и на воде. Вероятно, в определенных условиях проростки содержат достаточное количество предшественника АК, что позволяет им осуществлять синтез АК и в темноте, независимо от наличия экзогенных субстратов.

В проростках ячменя, помещенных на 0,005 М раствор щавелевой кислоты на свету (табл.4), за 6 часов освещения содержание АК увеличилось на 55% по сравнения с контролем. В листьях на растворе глюкозы прибавка в содержании АК составила 56%, на воде - 32. Следовательно, щавелевая кислота наряду с винной, янтарной и -кетоглутаровой может использоваться как субстрат в биосинтезе АК.

–  –  –

В следующей серии опытов исследовалось действие лимонной кислоты на накопление АК (табл. 6). Здесь также отмечено резкое возрастание содержания АК в освещенных проростках, причем прибавка АК была почти одинаковой во всех вариантах: на воде - 89%, на растворе лимонной кислоты - 94%, несколько большее увеличение на растворе глюкозы - 104%. Во всех темновых вариантах прибавка АК составила 19-26%. Следовательно, в присутствии экзогенной лимонной кислоты скорость новообразования АК на свету не увеличивается по сравнению с контролем на воде, а в случае с яблочной кислотой даже уменьшается.

Таким образом, наряду с углеводами в процессе биосинтеза АК могут использоваться соединения, содержащие более короткую углеродную цепочку, в частности некоторые органические кислоты, такие, как щавелевая, янтарная, винная и -кетоглутарозая. Причем использование их идет преимущественно на свету, а в случае с винной и -кетоглутаровой кислотами - только на свету [110].

Стимуляцию накопления АК в присутствии экзогенной щавелевой и винной кислот можно объяснить исходя на того факта, что деградация АК в растениях идет с образованием данных кислот. Следовательно, при их избытке, когда возможно ингибирование процесса деструкции молекулы АК конечными продуктами реакции, снижаются ее потери.

–  –  –

Стимуляцию синтеза АК экзогенными субстратам вообще, и органическими кислотами в частности, нельзя интерпретировать однозначно, как непосредственное использование этих соединений при новообразовании АК. Возможно опосредованное ускорение биосинтеза АК через стимуляцию других процессов, например, ЦТК в случае с органическими кислотами - интермедиатами цикла [15]. Это предположение проверялось в опытах по исследованию действия экзогенного пирувата, декарбоксилирование которого дает уксусную кислоту, используемую в ЦТК. Исследования показали стимуляцию синтеза АК в листьях ячменя, плавающих на 0,005 М растворе пирувата, по сравнению с вариантом, где в качестве субстрата использовался 0,005 М раствор глюкозы (рис.1). Положительное действие пирувата наблюдалось только у освещенных растений (рис. 2). Следовательно, существует связь биосинтеза АК с функционированием ЦТК на свету.

Рис. 1. Накопление АК в освещенных (31,5 тыс. эргсм-2с-1) листьях ячменя, плавающих на 0,005 М растворе глюкозы (1) и 0,005 М растворе пирувата (2) различное время Рис. 2. Действие экзогенного пирувата (0,005 М) на накопление АК в листьях ячменя в темноте (1) и на свету (31,5 тыс. эргсм-2с-1) (2) Более достоверные и информативные данные при исследовании возможности использования в биосинтезе АК тех или иных соединений, несомненно, дает метод меченых атомов. Показано, что изолированные листья девичьего винограда пятилисточкового (Parthenocissus quinquefolia.) трансформируют меченую d-глюкозу (5-3H-1-14С-глюкозу и 3H-, 14С-глюкозу) в АК с сохранением порядка атомов С-цепочки и С-6-положения оксиметильной группы [271, 272]. Таким образом, метод позволяет не только однозначно решить вопрос о возможности использования конкретного субстрата в биосинтезе АК, но и дает материал для решения вопроса о путях ее биосинтеза. Подробнее эти два взаимосвязанных вопроса будут рассматриваться в следующем разделе.

3.2. Химизм биосинтеза

Установление веществ, необходимых для образования АК, является лишь первым этапом в изучении путей ее синтеза, которые до сих пор полностью не исследованы [28, 306]. Наиболее значительные работы в этой области выполнены двумя группами исследователей: Ф.Ишервуд, Л.Мапсон, Г.Чжень и Ф.Ловус, Р.Джанг, а в последние годы - Ф.Ловус в сотрудничестве с Я.Хелспером, К.Саито и др. уже больше внимания обращали не на биосинтез, а на метаболизм АК.

Большинство авторов наиболее вероятными предшественниками АК считают d-глюкозу и d-галактозу [150]. Это значит, что при превращении их в l-АК гидроксильные группы у пятого углеродного атома должны быть перемещены из d, положения в l. Это может осуществиться прямой инверсией групп у С5 или инверсией всей цепи так, что С-1 d-глюкозы станет С-6 углеродной цепи АК.

Имеется несколько возможных механизмов для реализации этих изменений.

Ф.Ишервуд, Г.Чжень, Л.Мапсон [282, 283] считают, что превращение d-глюкозы и d-галактозы в l-АК включает инверсию всей молекулы и идет без предварительного расщепления углеродной цепи:

–  –  –

Приведенная схема не включает всех промежуточных соединений на пути синтеза АК. Л.Мапсон и Ф.Ишервуд [327] более подробно анализируют превращение d-галактуроновой кислоты в l-АК растительными экстрактами. Под влиянием экстракта из проростков гороха происходит превращение производных dгалактуроновой кислоты в производные l-галактоновой кислоты и дальше в lАК.

Этот процесс in vitro осуществляется в две стадии:

1) восстановление метил-d-галактуроната в l-галактоно--лактон под влиянием фермента, локализованного в растворимой части цитоплазмы; процесс идет за счет восстановленного НАДН;

2) окисление лактона в АК, требующее присутствия ферментного компонента, заключенного в митохондриях.

Эффективность использования l-галактоно--лактона в биосинтезе АК показана и другими авторами [287], наблюдавшими при его введении в листовые пластинки Petroselinum crispum резкое возрастание АК, содержание которой через 190 часов достигало 12% от сухого веса.

Правильность предлагаемой схемы синтеза проверяется следующим образом: в качестве субстрата растениям дается предполагаемое промежуточное вещество и регистрируется, насколько быстро из него синтезируется АК. В том случае, когда образование АК идет из d-глюкозы, непосредственным предшественником l-АК будет l-гулоно--лактон [74, 283, 388]. Возможность использования в синтезе АК d-галактуроновой кислоты и гулонолактона отрицалась Е.Ассольбергсом [209], который показал, что в отрезанных листьях яблони они вызывали меньший синтез АК, чем водный контроль. Автор предполагал, что промежуточное вещество между глюкуроновой и АК может быть иным, чем

-лактон.

Схема биосинтеза АК, предложенная Ф.Ишервудом с сотрудниками, находит подтверждение в экспериментах с использованием экзогенных субстратов (in vivo) и ферментных препаратов (in vitro). Подкормка проростков салата, бобов и гороха l-галактоно--лактоном легко дает l-АК. Д-глюкуроно--лактон и lгулоно--лактон также дают l-АК, но в намного меньшем количестве, чем соответствующие производные галактозы.

Ф.Ишервуд с сотрудниками первыми демонстрировали образование l-АК in vitro в экстрактах из проростков гороха, используя l-галактоно--лактон как субстрат. Ответственные ферменты были всецело локализованы внутри митохондрий. L-галактоно--лактон быстро превращался в l-АК. Скорость превращения lгулоно--лактона в l-АК составляла лишь 1/20 от скорости предыдущей реакции [282].

Таким образом, группой Ф.Ишервуда получены экспериментальные данные в подтверждение того, что в биосинтезе АК могут быть использованы производные d-глюкозы и d-галактозы, причем последние: d-галактуроновая кислота, lгалактоно--лактон - являются лучшими субстратами, чем соответствующие производные d-глюкозы. Этот путь образования АК, по мнению авторов, включает инверсию углеродного скелета исходной молекулы и образование промежуточных фосфорилированных продуктов.

Схема путей биосинтеза l-АК у Euglena gracilis, предложенная С.Шигеока [402], предусматривает возможность обмена метаболитами, образующимися из

d-глюкозы и d-галактозы при перестройке их в молекулу АК:

–  –  –

Жирные линии на схеме показывают главный путь синтеза АК, в ней приведены некоторые ключевые ферменты, катализирующие данный процесс:

(А) - UДР-глюкозо дегидрогеназа;

(В) - NАДР: l-гексонат дегидрогеназа;

(С) - l-гулоно--лактон дегидрогеназа.

Эффективным приемом в выяснении путей синтеза АК является использование радиоактивных метчиков, что дает возможность проследить путь от исходного вещества до конечного продукта. Такие исследования с использованием радиоактивных веществ проведены Ф.Ловусом с сотрудниками. В отделенные созревающие плоды земляники вводились растворы гексоз, меченых по определенному атому углерода. Через 24-120 часов из плодов выделялась АК, в ней определялось место меченого углерода и величина его активности. Кроме земляники анализировались листья винограда, петрушки, проростки кресс-салата, молодые побеги фасоли, Изолированные листья винограда трансформировали d-глюкозу в l-АК с сохранением порядка атомов С-цепочки и С-6-положения оксиметильной группы [272]. В ягодах земляники и побегах фасоли [217] исследовался биосинтез l-АК из l-гулоно-1,4-лактона и l-галактоно-1,4-лактона. Радиоактивность в l-АК была локализована в том же атоме углерода, что и в предшественнике. Результаты некоторых исследований, выполненных Ф.Ловусом с сотрудниками [308, 309, 310, 311, 312], суммированы в таблице 7.

Из представленных данных видно, что в плодах земляники и проростках кресс-салата молекула глюкозы, меченая по 1,2 или 6-му углеродному атому, превращается в l-АК, меченую соответственно по 1, 2 или 6-му атому углерода.

Это дало возможность авторам предполагать, что образование l-АК из dглюкозы и d-галактозы идет без разрыва углеродной цепи и без специфического использования одной или другой триозы. Данный случай рассматривается как один из путей образования АК в растениях, включающий образование фосфорилированных гексоз.

Иная картина была получена, когда в зеленые плоды земляники ввели d-глюкуронолактон, меченый по первому углеродному атому. После 66-часовой экспозиции 97% метки было сосредоточено в 6-м углеродном атоме l-АК, что возможно только при перестройке углеродного скелета [311].

Подобная инверсия цепи углерода имела место при введении в плоды земляники d-галактуроновой кислоты [304]. Данные эксперименты подтверждают мнение Ф.Ишервуда и его коллег о том, что образование l-АК предусматривает инверсию молекул исходных гексоз. Однако необходимо иметь в виду, что в данном случае образование АК зависело от введения специфического углеродного источника, такого, как d-глюкуронолактон. В нормальном процессе биосинтеза АК этот путь, очевидно, не будет главным.

Таблица 7 Включение субстратов - 14С в l-АК Распределение меченого С в молекуОбъект Субстрат ле АК, в % от общей активности С1 С2 С3 С4 С5 С6 d-глюкоза-1-14С Проростки кресс- 64

- - - - салата 73 d-глюкоза-1-14С 65-70 7-8 2-8 14-19 d-глюкоза-2-14С Созревающие плоды 69-73 0-6 22-23 2-5 d-глюкоза-6-14С земляники 24 1 1 2 73

- - - 97 d-глюкуронолактон-1С d-галактоза-1-14С 45 - 8 6 - 41 Следовательно, в растениях существует и другой путь синтеза l-АК из dглюкуронолактона и d-галактуроновой кислоты, который не включает образование промежуточных фосфорилированных продуктов и предусматривает образование l-АК с инвертным порядком углерода С-цепочки по сравнению с исходной уроновой кислотой или лактоном.



Pages:   || 2 | 3 | 4 | 5 |
Похожие работы:

«Regional A cadem y of M a n ag em en t European Scientific Foundation Institute of Innovation Regional Center for European Integration University of M oratuw a East European Institute Taraz Innovation and H um anities University A cadem y of Im ageology MATERIALS of the II International scientific-practical conference INNOVATION MANAGEMENT AND TECHNOLOGY IN THE ERA OF GLOBALIZATION 15-16 January 2015, (Panadura, Sri Lanka) Panadura, 2015 Innovation Management and Technology in the Era of...»

«ГОСУДАРСТВЕННЫЙ ТАТАРСТАН КОМИТЕТ РЕСПУБЛИКАСЫНЫ РЕСПУБЛИКИ ТАТАРСТАН ТАРИФЛАР БУЕНЧА ДЛТ ПО ТАРИФАМ КОМИТЕТЫ от 11 июля 2014 г. № 21-ПР г. Казань УТВЕРЖДАЮ Председатель Государственного комитета Республики Татарстан по тарифам М.Р.Зарипов ПРОТОКОЛ заседания Правления Государственного комитета Республики Татарстан по тарифам Присутствовали: председательствующий: Зарипов М.Р., председатель Государственного комитета Республики Татарстан по тарифам; члены Правления: Борисова Л.П., и.о. первого...»

«Начальник департамента Председатель Ивановской здравоохранения Ивановской областной организации профсоюза области работников здравоохранения РФ _ М.А. Ратманов _ Г.В. Вацуро « _» 2013 г. «_»_ 2013 г. ОТРАСЛЕВОЕ СОГЛАШЕНИЕ по учреждениям здравоохранения Ивановской области на 2014-2016 годы Соглашение зарегистрировано Комитетом Ивановской области по труду, содействию занятости населения и трудовой миграции Регистрационный № г. Иваново 2013 год ОТРАСЛЕВОЕ СОГЛАШЕНИЕ по государственным бюджетным и...»

«Название документа Федеральный закон от 21.11.2011 N 323-ФЗ (ред. от 08.03.2015) Об основах охраны здоровья граждан в Российской Федерации Текст документа 21 ноября 2011 года N 323-ФЗ РОССИЙСКАЯ ФЕДЕРАЦИЯ ФЕДЕРАЛЬНЫЙ ЗАКОН ОБ ОСНОВАХ ОХРАНЫ ЗДОРОВЬЯ ГРАЖДАН В РОССИЙСКОЙ ФЕДЕРАЦИИ Принят Государственной Думой 1 ноября 2011 года Одобрен Советом Федерации 9 ноября 2011 года Список изменяющих документов (в ред. Федеральных законов от 21.11.2011 N 323-ФЗ, от 25.06.2012 N 89-ФЗ, от 25.06.2012 N...»

«ООО «СТРОЙДИЗЕЛЬ» (3 4 3 )2 1 3 -9 7 -3 2 г. Екатеринбург КАТАЛОГ Автосервисное оборудование для грузовых и специальных автомобилей Грузовой Прессы. Домкраты Подъмники шиномонтаж грузовые Стенды и оборудование Инструмент Моечное для ремонта оборудование и обслуживания ТНВД Полный каталог оборудования на сайтах: www.dst-ural.ru www.prodisel.ru 623700 Свердловская обл., г. Березовский, пос. Ленинский, 44 тел. (343) 2139732, тел./факс (34369) 47351, 47751 e-mail: info@dst-ural.ru, www.dst-ural.ru...»

«УПРАВЛЕНИЕ ПО ТАРИФНОМУ РЕГУЛИРОВАНИЮ Мурманской области ПРОТОКОЛ ЗАСЕДАНИЯ КОЛЛЕГИИ Мурманск 05.12.2014 УТВЕРЖДАЮ И.о. начальника Управления по тарифному регулированию Мурманской области _ В.А. Губинский «05» декабря 2014 г. Председатель заседания: ГУБИНСКИЙ В.А. И.о. начальника Управления по тарифному регулированию Мурманской области На заседании присутствовали: Члены коллегии: КУТЕПОВ О.В. Заместитель начальника Управления ШИЛОВА А.Б. Начальник отдела Управления НЕЧАЕВА В.И. Начальник отдела...»

«СУД ГОРОДА МИНСКА СУДЕБНАЯ КОЛЛЕГИЯ ПО ГРАЖДАНСКИМ ДЕЛАМ Тонкачевой Елены Борисовны, гражданки Российской Федерации, проживающей по адресу: Республика Беларусь, г.Минск, проспект Независимости, Х-Х телефон 8-029ХХХХХХ Кассационная жалоба Суд Первомайского района города Минска 13 января 2015 года принял решение (далее по тексту – решение) об отказе в удовлетворении моей жалобы на действия (постановление от 05.11.2014) УВД администрации Первомайского района города Минска, ущемляющие мои права. В...»

«РЕФОРМА РЕГУЛИРОВАНИЯ КАЧЕСТВА ПОВЕРХНОСТНЫХ ВОД В ВЕКЦА Совещание экспертов, Киев, 27 мая 2008 г. РЕГУЛИРОВАНИЕ КАЧЕСТВА ПОВЕРХНОСТНЫХ ВОД В СТРАНАХ ВЕКЦА: НАПРАВЛЕНИЯ РЕФОРМЫ Тематический документ 1. ВВЕДЕНИЕ 2. ТЕКУЩЕЕ СОСТОЯНИЕ И НЕОБХОДИМОСТЬ РЕФОРМЫ РЕГУЛИРОВАНИЯ КАЧЕСТВА ПОВЕРХНОСТНЫХ ВОД В ВЕКЦА 3. ОСНОВНЫЕ ПОДХОДЫ К РЕФОРМЕ В ВЕКЦА 3.1. Дифференциация НКПВ исходя из определенного вида использования водоемов. 5 Цели и нормативы качества вод Классификация водоемов по назначению...»

«ОГЛАВЛЕНИЕ Список принятых сокращений ВВЕДЕНИЕ 1. СОВРЕМЕННОЕ ИСПОЛЬЗОВАНИЕ И АРХИТЕКТУРНОПЛАНИРОВОЧНАЯ ОРГАНИЗАЦИЯ ТЕРРИТОРИИ 2. ПРИРОДНАЯ ХАРАКТЕРИСТИКА ТЕРРИТОРИИ 2.1. Рельеф и геоморфология 2.2. Геологическое строение 2.3. Тектоника и сейсмичность 2.4. Гидрогеологические условия 2.5. Гидрологическая характеристика 2.6. Климатическая характеристика 2.7. Ландшафтные характеристики 2.8. Почвенный покров 2.9. Растительный и животный мир 2.10. Твердые нерудные полезные ископаемые 2.11....»

«Rural Environment. Education. Personality. (REEP) Proceedings of the 8th International Scientific Conference No. 8 ISSN 2255-808X Dedicated to the 15th Anniversary of Institute of Education and Home Economics Jelgava Rural Environment. Education.Personality (REEP) (2015). Proceedings of the International Scientific Conference. Volume 8, 15th 16th May, 2015, LLU, Jelgava, Latvia, pp. 434.Participating education establishments: Czech University of Life Sciences, Czech Republic Daugavpils...»

«Годовой отчет ГОДОВОЙ ОТЧЕТ 2014 АО «GOLDEN COMPASS CAPITAL»СОДЕРЖАНИЕ ОБЗОР ДЕЯТЕЛЬНОСТИ АО «Golden Compass Capital» сегодня. Ценности Компании.. Стратегические цели и направления развития. Ключевые показатели.. Анализ финансовых и производственных показателей. Обращение Председателя Совета директоров. Обзор года Председателем Правления. Основные события 2014 года.. Бизнес модель АО «Golden Compass Capital». Обзор производственной деятельности. Факторы риска.. Управление рисками.. Обзор рынка...»

«КОНТРОЛЬНО-СЧЕТНАЯ ПАЛАТА САНКТ-ПЕТЕРБУРГА Антоненко пер., д.4, Санкт-Петербург, 190107 тел./ факс (812) 314-37-26 e-mail: ksp@ksp.org.ru http://www.ksp.org.ru ОГРН 1117847580245 ОКПО 30723374 ОКАТО 40262562000 ИНН/КПП 7838468985/783801001 17.10.2013 № 1-613/13-0-1 УТВЕРЖДАЮ Председатель Контрольно-счетной палаты Санкт-Петербурга В.С.Лопатников _ 2013 года ЗАКЛЮЧЕНИЕ на проект закона Санкт-Петербурга «О бюджете Санкт-Петербурга на 2014 год и на плановый период 2015 и 2016 годов» СОДЕРЖАНИЕ...»

«ПРОЧТИ И РАСПЕЧАТАЙ ДЛЯ СВОИХ КОЛЛЕГ! НОВОСТИ РГГУ WWW.RGGU.RU ЕЖЕНЕДЕЛЬНЫЙ ИНФОРМАЦИОННЫЙ БЮЛЛЕТЕНЬ * 23 ноября 2009 Г. * №42 ВЫХОДИТ ПО ПОНЕДЕЛЬНИКАМ ОТ РЕДАКЦИИ Уважаемые читатели! Перед вами сорок второй номер нашего еженедельника в этом году. Для Вашего удобства мы предлагаем Вам две версии этого электронного издания – в обычном Word'e и в универсальном формате PDF, который сохраняет все особенности оригинала на любом компьютере. Более подробные версии наших новостей на сайте университета...»

«ЦЛРРЪ51Ш11|ЦЛ| 1ЛЦ № « З Ь П. М Ц. Ч Р Ь ^ п ч м ц. и ц. ч + з и м и ъ Ш ' ъ ч ъ и ^ з ц л п ц, ЪЗПМ*ЬРС (1981-1982.)* Р Р ««№!1Г!1М»-ЗИЪ, Ф 1 Ч М ) П Ф 0. Э П М » 3 1 М. Ъ Ч М Ч Ы. П 1 Ш ' СЦР» 1981 Р. X1 С. *Ч.. Д Н И ^ И Р Ф И. РШУД /ИШЪП1Р 1 ШЫ, Т 1 Ш Р Р ^ Ч Ш \ И К Р /, Р Ш Ц Ш ^ П Р Т Р ^ Ь Р ЧШ^ШЬДЫЦШ •нптш.'/шЬ и/ЬттР/игЬ фпр&Ьрр (XVIII 7Ш/1Д 80-.ш1/шЬ РР-), 37—42г * 1975—1930 рр. Ь^трЬрр тк'и «Чштйш-ршЬиш^рш^шЬ '.шЬцЬия, 1980, Л! 3, {{ 307 — 31В, 1982, М 2, 1.2 229—233,...»

«Макаренко Екатерина Юрьевна ДИЗАЙН ДЕТСКИХ ЖУРНАЛОВ СВЕТЛЯЧОК (1902-1918) И ЖАВОРОНОК (1913-1923) В данной статье рассмотрено оформление детских журналов Светлячок и Жаворонок, которое никогда ранее не изучалось. Нами был исследован архив журналов за все годы выпуска. Благодаря системному подходу и методу комплексного анализа оформления были сделаны соответствующие выводы о журналах Светлячок и Жаворонок как образцах дизайна. Издания отличаются продуманной концепцией и удачными приёмами...»



 
2016 www.os.x-pdf.ru - «Бесплатная электронная библиотека - Научные публикации»

Материалы этого сайта размещены для ознакомления, все права принадлежат их авторам.
Если Вы не согласны с тем, что Ваш материал размещён на этом сайте, пожалуйста, напишите нам, мы в течении 1-2 рабочих дней удалим его.